Yosuke Watanabe….. University of Tokyo, RIKEN A, KEK C, Development of a GEM tracker for E16 J-PARC 1 Thanks to ???????????

Slides:



Advertisements
Similar presentations
TIME 2005: TPC for the ILC 6 th Oct 2005 Matthias Enno Janssen, DESY 1 A Time Projection Chamber for the International Linear Collider R&D Studies Matthias.
Advertisements

Yosuke Watanabe K.Utsunomiya, K.Ozawa, Y.Komatsu, S. Masumoto, T. Sato K. Aoki A,H.Enyo A, S. Yokkaichi A T. Gunji B, H. Hamagaki B, Y. Hori B, T.Tsuji.
CSC Test Beam Data Analysis Alexander Khodinov and Valeri Tcherniatine.
Proposal for a new design of LumiCal R. Ingbir, P. Ruzicka, V. Vrba October 07 Malá Skála.
The Belle Silicon Vertex Detector T. Tsuboyama (KEK) 6 Dec Workshop New Hadrons with Various Flavors 6-7 Dec Nagoya Univ.
Ozgur Ates Hampton University HUGS 2009-JLAB TREK Experiment “Tracking and Baseline Design”
Tracking detectors/1 F.Riggi.
GEM Detector Shoji Uno KEK. 2 Wire Chamber Detector for charged tracks Popular detector in the particle physics, like a Belle-CDC Simple structure using.
Pair Spectrometer Design Optimization Pair Spectrometer Design Optimization A. Somov, Jefferson Lab GlueX Collaboration Meeting September
Detector R&D: J-PARC-E16 K. Ozawa (Univ. of Tokyo) for the E16 collaboration.
GEM DHCAL Simulation Studies J. Yu* Univ. of Texas at Arlington ALCW, July 15, 2003 Cornell University (*on behalf of the UTA team; S. Habib, V. Kaushik,
Linear Collider TPC R&D in Canada Madhu Dixit Carleton University.
HPS Test Run Setup Takashi Maruyama SLAC Heavy Photon Search Collaboration Meeting Thomas Jefferson National Accelerator Facility, May 26-27,
2012 IEEE Nuclear Science Symposium Anaheim, California S. Colafranceschi (CERN) and M. Hohlmann (Florida Institute of Technology) (for the CMS GEM Collaboration)
Report of the NTPC Test Experiment in 2007Sep and Others Yohei Nakatsugawa.
IHEP, Bejing 9th ACFA ILC Physics and Detector Workshop & ILC GDE Meeting The preliminary results of MPGD-based TPC performance at KEK beam.
SPHENIX GEM Tracker R&D at BNL Craig Woody BNL sPHENIX Design Study Meeting September 7, 2011.
Medium heavy Λ hyper nuclear spectroscopic experiment by the (e,e’K + ) reaction Graduate school of science, Tohoku University Toshiyuki Gogami for HES-HKS.
ハイパー核ガンマ線分光用 磁気スペクトロメータ -SksMinus- 東北大学 大学院理学研究科 白鳥昂太郎 ATAMI.
Jeroen van Hunen The LHCb Tracking System. May 22, 2006 Frontier Detectors for Frontier Physics, Elba, Jeroen van Huenen 2 The LHCb Experiment LHCb.
Setup for hypernuclear gamma-ray spectroscopy at J-PARC K.Shirotori Tohoku Univ. Japan for the Hyperball-J collaboration J-PARC E13 hypernuclear  -ray.
Development of a Time Projection Chamber Using Gas Electron Multipliers (GEM-TPC) Susumu Oda, H. Hamagaki, K. Ozawa, M. Inuzuka, T. Sakaguchi, T. Isobe,
TPC R&D status in Japan T. Isobe, H. Hamagaki, K. Ozawa, and M. Inuzuka Center for Nuclear Study, University of Tokyo Contents 1.Development of a prototype.
1 TRD-prototype test at KEK-FTBL 11/29/07~12/6 Univ. of Tsukuba Hiroki Yokoyama The TRD prototype is borrowed from GSI group (thanks Anton).
EPS-HEP 2015, Vienna. 1 Test of MPGD modules with a large prototype Time Projection Chamber Deb Sankar Bhattacharya On behalf of.
Performance of a Large-Area GEM Detector Prototype for the Upgrade of the CMS Muon Endcap System Vallary Bhopatkar M. Hohlmann, M. Phipps, J. Twigger,
1 A.Andronic 1, H.Appelshäuser 1, V.Babkin 2, P.Braun-Munzinger 1, S.Chernenko 2, D.Emschernmann 3, C.Garabatos 1, V.Golovatyuk 2, J.Hehner 1, M.Hoppe.
A search for deeply-bound kaonic nuclear states in (in-flight K -, N) reaction Hiroaki Ohnishi RIKEN.
Preliminary results of a detailed study on the discharge probability for a triple-GEM detector at PSI G. Bencivenni, A. Cardini, P. de Simone, F. Murtas.
Feb. 7, 2007First GLAST symposium1 Measuring the PSF and the energy resolution with the GLAST-LAT Calibration Unit Ph. Bruel on behalf of the beam test.
GEM basic test and R&D plan Takuya Yamamoto ( Saga Univ. )
Status of New TPC( Ⅱ ) Performance Study Yohei Nakatsugawa LEPS Meeting in Taiwan.
Design and performance of Active Target GEM-TPC R. Akimoto, S. Ota, S, Michimasa, T. Gunji, H. Yamaguchi, T. hashimoto, H. Tokieda, T. Tsuji, K. Kawase,
Takeshi Fujiwara, Hiroyuki Takahashi, Kaoru Fujita, Naoko Iyomoto Department of Nuclear Engineering and Management, The University of Tokyo, JAPAN Study.
The GEM activities at Tsinghua University Zhigang Xiao 1, Yan Huang 1, Rensheng Wang 1, Haiyan Gao 1,2 1 Department of Physics, Tsinghua University 2 Dept.
1 Hypernuclear  -ray spectroscopy via the (K -,  0 ) reaction K. Shirotori Tohoku Univ.
Development of Digital Hadron Calorimeter Using GEM Shahnoor Habib For HEP Group, UT Arlington Oct. 12, 2002 TSAPS Fall ’02, UT Brownsville Simulation.
Summer Student Session, 11/08/2015 Sofia Ferreira Teixeira Summer Student at ATLAS-PH-ADE-MU COMSOL simulation of the Micromegas Detector.
Simulations of various aspects of the PPS Various members of the collaboration, to be enumerated later.
Test of the GEM Front Tracker for the SBS Spectrometer at Jefferson Lab F. Mammoliti, V. Bellini, M. Capogni, E. Cisbani, E. Jensen, P. Musico, F. Noto,
Jonathan BouchetBerkeley School on Collective Dynamics 1 Performance of the Silicon Strip Detector of the STAR Experiment Jonathan Bouchet Subatech STAR.
1 Design of active-target TPC. Contents I.Physics requirements II.Basic structure III.Gas property IV.Electric field Distortion by ground Distortion of.
Future Possibilities for Measuring Low Mass Lepton Pairs in Christine Aidala for the Collaboration Quark Matter 2002, Nantes.
J-PARC でのハイパー核ガンマ線分光実験用 散乱粒子磁気スペクトロメータ検出器の準備 状況 東北大理, 岐阜大教 A, KEK B 白鳥昂太郎, 田村裕和, 鵜養美冬 A, 石元茂 B, 大谷友和, 小池武志, 佐藤美沙子, 千賀信幸, 細見健二, 馬越, 三輪浩司, 山本剛史, 他 Hyperball-J.
Abstract Beam Test of a Large-area GEM Detector Prototype for the Upgrade of the CMS Muon Endcap System V. Bhopatkar, M. Hohlmann, M. Phipps, J. Twigger,
Master thesis 2006 Shirotori1 Hypernuclear gamma-ray spectroscopy at J-PARC K1.8 beam line 東北大学大学院理学研究科 原子核物理 白鳥昂太郎.
Beam Test of a Large-Area GEM Detector Prototype for the Upgrade of the CMS Muon Endcap System Vallary Bhopatkar M. Hohlmann, M. Phipps, J. Twigger, A.
CGEM-IT project and beam test program G. Felici for the FE-LNF-TO team Partially supported by the Italian Ministry of Foreign Affairs under the Program.
Construction and beam test analysis of GE1/1 prototype III gaseous electron multiplier (GEM) detector V. BHOPATKAR, E. HANSEN, M. HOHLMANN, M. PHIPPS,
INSTR L.Shekhtman 1 Triple-GEM detectors for KEDR tagging system V.M.Aulchenko, A.V.Bobrov,A.E.Bondar, L.I.Shekhtman, E.V.Usov, V.N.Zhilich,
On behalf of the LCTPC collaboration VCI13, February 12th, 2013 Large Prototype TPC using Micro-Pattern Gaseous Detectors  David Attié 
J-PARC でのシグマ陽子 散乱実験の提案 Koji Miwa Tohoku Univ.. Contents Physics Motivation of YN scattering Understanding Baryon-Baryon interaction SU(3) framework Nature.
SPring-8 レーザー電子光 ビームラインでの タギング検出器の性能評価 核物理研究センター 三部 勉 LEPS collaboration 日本物理学会 近畿大学 1.レーザー電子光 2.タギング検出器 3.実験セットアップ 4.エネルギー分解能 5.検出効率とバックグラウンドレート.
P.F.Ermolov SVD-2 status and experimental program VHMP 16 April 2005 SVD-2 status and experimental program 1.SVD history 2.SVD-2 setup 3.Experiment characteristics.
Development of a Single Ion Detector for Radiation Track Structure Studies F. Vasi, M. Casiraghi, R. Schulte, V. Bashkirov.
A New Upper Limit for the Tau-Neutrino Magnetic Moment Reinhard Schwienhorst      ee ee
Performances of a GEM-based TPC prototype for the AMADEUS experiment Outline: GEM-TPC in AMADEUS experiment; Prototype design & construction; GEM: principle.
Simulation / reconstruction with GEMs at DAC A.Zinchenko, A.Kapishin, V.Vasendina for the collaboration VBLHEP, JINR, Dubna,
Design and performance of Active Target GEM-TPC R. Akimoto, S. Ota, S, Michimasa, T. Gunji, H. Yamaguchi, T. Hashimoto, H. Tokieda, T. Tsuji, S. Kawase,
Development of 100 MHz trackers
Tracking(1) Kp2 decay-in-flight BG simulation
Monte Carlo simulation of the GEM-based neutron detector
The LHC collider in Geneva
Background Reduction for Quantitative Gamma-ray Imaging with the Electron-Tracking Compton Camera in High Dose Areas May 26th, PS10A-10 T. Mizumoto,
MWPC’s, GEM’s or Micromegas for AD transfer and experimental lines
Development of GEM at CNS
Bi-Weekly Meeting 2004/09/08 Susumu Oda
in c-tau factory detector
GLD IR optimization and background study
A DLC μRWELL with 2-D Readout
Presentation transcript:

Yosuke Watanabe….. University of Tokyo, RIKEN A, KEK C, Development of a GEM tracker for E16 J-PARC 1 Thanks to ???????????

Outline 2 1. J-PARC E16 experiment 2. Gas Electron Multiplier(GEM) 3. GEM tracker Setup Result of beamtests 4. Remaining issues 5. Summary

J-PARC E16 experiment 3 p KEK –PS E325 φ Mass modification exist 30 or 50 GeV 100 times more statistc 2 times better resolution Systematic study -Momentum dependence -Nuclear size depencence  M =11MeV,  <1.25  M =5MeV,  <0.5 J-PARC E16

E16 spectrometer 4 How to achieve 2 times better mass resolution 100 times more statistic? × 10 beam intensity × 5 acceptance × 2 cross section Required ability for the tracker -Torelance to high rate events -100 μm position resolution New spectrometer GEM

GEM(Gas Electron Multiplier) 5 50 μm 100 μm 140 μm 70μm70μm 4 μm Copper 10cm Our GEM (made in Japan) schematic view Hole size and pitch: Standard design developed at CERN Most of the applications use 50 μ m GEM. Kapton

GEM Chamber 6 1 2 3 Collect ionized electrons (Drift gap) Length Electric field Amplify electrons 50 μ m GEM × 3 50 μ m GEM+100 μ m GEM 2 D strip read out 700μ m pitch Chamber set up and parameters

Test configuration 7 Drift gap 11mm, 500V/cm3mm, 1500V/cm Amplifing part 50 μm×3100μm+ 50 μm Read out strip pitch 700 μm Gas Ar90%CH 4 10% Feature More primary electrons Tolerant to inclined beam Second test 2mm First test 2mm good effective gain

Analysis procedure 8 Hit position determined by GEM chamber Hit position determined by Silicon Strip Detector(SSD) X1X1 X4X3X3 X2X2 Q2Q2 Q3Q3 Q4Q4 Q1Q1 Q5Q5 X5X5 Center Of Gravity SSD GEM Events difference mm -Multiple scattering -Tracking Accuracy Position resolution beam

Test result 9 First test (11mm drift gap) Second test(3mm drift gap) Incident angle Position resolution 160 μ m270 μ m470 μ m810 μ m Incident angle 015 Position resolution 100 μ m470 μ m incident angle Drift gap Better resolution for inclined beam Achieved our goal !

Remaining issues 1 10 Worse resolution for Second test Problem of collection efficiency ? collection efficiency: probablity for an electron in drift gap to experience multiplication FirstSecond Estimated N primary electron ~ 15 ~2~2 How to improve it while keeping the drift gap narrow? ε collection = ε collection (GEM geometry, E GEM / E drift ) E GEM should be stronger E drift should be weaker 50 μ m100 μ m 340V 285V(/50 μ m) With 50 μ m GEM, we have ~ 5 times better collection efficiency now. disadvantage

Remaining issues 2 11 What if collection efficiency = 100% ? How to deal with it ? simulation position resolution ( μm ) incident angle (degree) Result of simulation It gives better resolution than reality. Not enough for our goal Narrower drift gap (1mm,2mm) Use arrival timing information

Summary 12 Developing of GEM tracker for E16 experiment is under way We achieved 100 resolution for 0 degree beam. Narrower drift gap leads to better resolution for inclined beam. We have not achieved 100 for inclined beam yet, but timing information may solve this problem. Another beam test will be performed at the end of the next month.

Back ups 13

Beam test setup 14 20cm 40cm SSD (silicon Strip Detector) scintilator GEM chamber pre-amplifierpost-amplifier charge sensitive ADC(v792) Read out circuits for GEM Trigger ← Scintillators 2 GeV electron ~5Hz400MeV positron ~100Hz

φ e+e+ E16 experiment 15 p+A → φ +X e + +e - e-e- Measurement of φ meson mass spectrum in the nuclear medium High statistic Good mass resolution lead glass calorimeter Gas Cerenkov e-e- p electron track 3 layers of a GEM chamber position resolution : 100 μm Gas Cerenkov : Next talk

Collection efficiency μ m100 μ m 340V 285V(/50 μ m) Larger E GEM /E drift gap → Better collection efficiency laboratory 90 Sr scintilater Pad read out 3cm 12cm ADC value 50 μmGEM×3 3mm 600V/cm Improved collection efficiency : 5 times compared to the