Theoretical prediction of structures and properties of lithium under high pressure ( 高圧下におけるリチウムの構造と 物性の理論的予測 ) Yoshida Laboratory Yuya Yamada (山田裕也)

Slides:



Advertisements
Similar presentations
三方晶テルル・セレンにおけるDirac分散とスピン軌道効果
Advertisements

Graduate school of Science and Technology, Nagasaki University
M1 colloquium Shimizu-group M1 Daiki Hayashi Possibility of metallic phase and three-dimensional conductance of graphite.
微視的核構造反応模型を用いた 9Li 原子核の励起状態の研究
Molecular dynamics modeling of thermal and mechanical properties Alejandro Strachan School of Materials Engineering Purdue University
The DFT-calculation of Potassium doped Picene Kotaro Yamada Kusakabe labolatory.
Ab initio calculation of pristine picene and potassium doped picene Kotaro Yamada Kusakabe laboratory Reference: T. Kosugi et al.: J. Phys. Soc. Jpn. 78.
Direct conversion of graphite into diamond through electronic excited states H.Nakayama and H.Katayama-Yoshida (J.Phys : Condens. Matter 15 R1077 (2003)
Pressure-Induced Hydrogen-dominant metallic state in Aluminum Hydride HAGIHARA Toshiya Shimizu-group Igor Goncharenko et al., Phy. Rev. Lett. 100,
1 High Pressure Study on MgB 2 B.Lorenz, et al. Phys. Rev.B 64,012507(2001) Shimizu-group Naohiro Oki.
Yoshida Lab Tatsuo Kano 1.  Introduction Computational Materials Design First-principles calculation DFT(Density Functional Theory) LDA(Local Density.
1 Raman spectra and X-ray diffraction of Boron Triiodide at high pressure SHIMIZU Group ONODA Suzue Ref: A. Anderson and L. Lettress J. Raman Spectrosc.
2012 Summer School on Computational Materials Science Quantum Monte Carlo: Theory and Fundamentals July 23–-27, 2012 University of Illinois at Urbana–Champaign.
2014/7/2 Yoshida lab Shun Miyaue
Computational Solid State Physics 計算物性学特論 第2回 2.Interaction between atoms and the lattice properties of crystals.
Electronic structure of La2-xSrxCuO4 calculated by the
1 Motivation (Why is this course required?) Computers –Human based –Tube based –Solid state based Why do we need computers? –Modeling Analytical- great.
Computing lattice constant, bulk modulus and equilibrium energies of solids Bulk Si Diamond structure.
The Nuts and Bolts of First-Principles Simulation
Shimizu-lab M-1 Kubota Kazuhisa
Yoshida Lab M1 Yoshitaka Mino. C ONTENTS Computational Materials Design First-principles calculation Local Density Approximation (LDA) Self-Interaction.
First-principles study of spontaneous polarization in multiferroic BiFeO 3 Yoshida lab. Ryota Omichi PHYSICAL REVIEW B 71, (2005)
Investigation of fluid- fluid phase transition of hydrogen under high pressure and high temperature 2014/11/26 Shimizu laboratory SHO Kawaguchi.
Theoretical approach to physical properties of atom-inserted C 60 crystals 原子を挿入されたフラーレン結晶の 物性への理論的アプローチ Kusakabe Lab Kawashima Kei.
Computational Solid State Physics 計算物性学特論 第4回 4. Electronic structure of crystals.
Computational Solid State Physics 計算物性学特論 第8回 8. Many-body effect II: Quantum Monte Carlo method.
M1 Colloquium Presentation Arora Varun 29A13106 (Shimizu Lab) Superconductivity in MNX type compounds ( TiNCl ) Superconducting Nitride Halides (MNX),
Electrical conduction property of solid iodine in the molecular phase Shimizu Group Yu TANAKA.
Computational Solid State Physics 計算物性学特論 第6回
Ideal strength of bcc nonmagnetic V-based random alloys from first- principles theory Xiaoqing Li, Stephan Schönecker, Jijun Zhao, Börje Johansson, and.
Magnetic property of dilute magnetic semiconductors Yoshida lab. Ikemoto Satoshi K.Sato et al, Phys, Rev.B
MEG 実験におけるミュー粒子放射崩壊の 測定と利用 日本物理学会第67回年次大会 ICEPP, the University of Tokyo 内山 雄祐.
Yoshida Laboratory Yuya Yamada (山田裕也) 1 Theoretical prediction of structures and properties of simple materials under high pressure ( 高圧下における単純物質の構造と物性の理論的予測.
VUV14, July 23, 2004 Electronic structures of Ca induced one-dimensional reconstructions on a Si(111) surface Kazuyuki Sakamoto Dept. Phys., Tohoku University,
 Hyperon atom : Σ atom, Ξ, analysis of atomic data Level width : Determination of the coupling constants Σatom : Ξatom : Level Shift : Determination of.
Shimizu Lab. M1 Takuya Yamauchi
High Pressure study of Bromine Shimizu Lab M2 Hayashi Yuma.
High Pressure study of Bromine
Phase diagram of solid oxygen at low temperature and high pressure
野村悠祐、中村和磨A、有田亮太郎 東大工、九工大院A
10,12 Be におけるモノポール遷移 Makoto Ito 1 and K. Ikeda 2 1 Department of Pure and Applied Physics, Kansai University I. 導入:研究の大域的目的とこれまでの研究成果 II. 今回の目的:モノポール遷移への興味.
Computational Solid State Physics 計算物性学特論 第10回 10. Transport properties II: Ballistic transport.
1 SHIMIZU Group ONODA Suzue Metallization and molecular dissociation of SnI 4 under pressure Ref: A.L. Chen, P.Y. Yu, M.P. Pasternak, Phys. Rev. B. 44,
Development of density functional theory for unconventional superconductors Ryotaro Arita Univ. Tokyo/JST-PRESTO.
Helical Spin Order in SrFeO 3 and BaFeO 3 Zhi Li Yukawa Institute for Theoretical Physics (YITP) Collaborator: Robert Laskowski (Vienna Univ.) Toshiaki.
Structural Determination of Solid SiH 4 at High Pressure Russell J. Hemley (Carnegie Institution of Washington) DMR The hydrogen-rich solids are.
第十四届全国核结构大会暨第十次全国核结构专题讨论会
Pressure Dependence of Superconductivity of Iron Chalcogenides
High pressure study on superconductor K x Fe 2-y Se 2 M1 Hidenori Fujita Shimizu group.
高精度分光を目指した CaH + の 生成とトラップ 富山大学・理 森脇喜紀. Spectroscopy of 40 CaH + the pure vibrational transition (v=0, J=0, F=1/2, M=±1/2) → (v=1, J=0, F=1/2, M=±1/2)
2/06/2015PHY 752 Spring Lecture 101 PHY 752 Solid State Physics 11-11:50 AM MWF Olin 107 Plan for Lecture 10: Reading: Chapter in MPM;
1 4.1 Introduction to CASTEP (1)  CASTEP is a state-of-the-art quantum mechanics-based program designed specifically for solid-state materials science.
Computing lattice constant, bulk modulus and equilibrium energies of bulk cubic SrTiO 3 Bulk SrTiO 3 Cubic structure.
NMR measurement using diamond anvil cell 7/6 Shimizu-Lab M1 Masuda Akiyoshi 1.
Review of solid state physics
Band Theory of Electronic Structure in Solids
CHAPTER 3: STRUCTURE OF CRYSTALLINE SOLIDS
DFT simulations of Li-ion conductor Li2(OH)Cl
Condensed Matter Physics: review
Effects of Si on the Electronic Properties of the Clathrates
Physics 342 Lecture 28 Band Theory of Electronic Structure in Solids
tight binding計算によるペロブスカイト型酸化物薄膜のARPESの解析
Electronic Structure and First Principles Theory
Prof. Sanjay. V. Khare Department of Physics and Astronomy,
“Phonon” Dispersion Relations in Crystalline Materials
Quantum Mechanical Treatment of The Optical Properties
Yoshida Lab Tatsuo Kano
2019/4/16 Search for liquid-metallic hydrogen under high temperature and high pressure Shimizu group M1 SHO Kawaguchi V. Dzyabura et al. PNAS, 110, 20,
First Brillouin zone of FCC lattice and the band diagram (Do you see any gaps?)
Pressure generation of toroidal anvil cell for physical property investigation under ultra-high pressure 2019/5/29 Shimizu Lab Kara Yusuke.
Presentation transcript:

Theoretical prediction of structures and properties of lithium under high pressure ( 高圧下におけるリチウムの構造と 物性の理論的予測 ) Yoshida Laboratory Yuya Yamada (山田裕也)

Contents Motivation Research method first principle calculation (第一原理計算) Successful example Elements under high pressure My study –lithium Summary

Pressure example Where F is force, A area. Elephant with high-heeled shoes : 10 8 Pa Diamond Anvil Cell: Pa Definition 1000 times

Characteristic phases of elemental substances at high pressures 2 period elemental substances ・ structures ・ metal   insulator ・ formation of molecules ・ molecular dissociation

Motivation Motivation High pressure-> phase transition Searching about elemental substances -> Basic knowledge of phase transition

Study’s flow Study’s flow Design Calculating by computer Get properties First-principles calculation ・ Atomic number ・ Atomic position

Solid State Physics Classical Mechanics Quantum Mechanics Newton's equation of motion Schrödinger equation operator

Advantage of Computational physics including first principle calculation We can predict properties of materials instead of experiment. ( at a low price,No danger ) Properties under almost unrealizable conditions can be predicted.

Example of prediction being ahead Ca-V structure is predicted theoretically. Experimental results are useful,but structure cannot be determined by only them. Takahiro Ishikawa Phys.Rev. B 77,

Phase diagram of oxygen S. Serra et al.,1998 α- phase ( Akahama et al.,2001) monoclinic orthorhombic ε phase Fujihisa et al.,2006 monoclinic S. Serra et al.,1998

Phase diagram of Li 0 GPa bcc fcc hR1 cI16 Confirmed by Exp. Not confirmed by Exp Unknown Predicted only theoretically. Expected to be Aba2 etc. M.Hanflad et al. Nature 2000 Takahiro Matsuoka & Katsuya Shimizu Nature 2009

Band structure of Li (C2) Band structure of Li (C2) Brillouin Zone [eV] I used the parameters in the following paper. Yansun Yao et al. PRL 102, (2009) 74-91 GPa structure

Band structure of Li (C2) [eV] Semiconducting ! (indirect transition type) Band gap [eV] 74-91 GPa

Band Structure of Li(Aba2) [eV] Brillouin Zone Above 91 GPa structure

Band structure of Li(Aba2) [eV] Band gap [eV] semiconducting ! (almost direct transition type ) Above 91 GPa

Summary Li is semiconducting when it is under high pressure. Structure of oxygen under high pressure is characteristic. First-principles calculation is an useful method.