Yu. Shitov, Imperial College, London  From NEMO-3 to SuperNEMO  Choice of nucleus for measurments  Calorimeter R&D  Low background R&D  Tracker R&D.

Slides:



Advertisements
Similar presentations
Proposal to join NEMO-3  decay experiment P. Adamson, R. Saakyan, J. Thomas UCL 27 January 2003.
Advertisements

SuperNEMO Thoughts about next generation NEMO experiment Ruben Saakyan UCL.
Double Beta Decay review
SNOW 2006, StockholmNEMO 3 and SuperNEMO experiments Vladimir Vasiliev, UCL 2-6 May ’06, Stockholm on behalf of NEMO and SuperNEMO collaborations NEMO.
 NEMO-3 Detector  Preliminary results Performance of the detector  analysis for 100 Mo, 82 Se and 150 Nd  Background study for  research ( 208.
M. Dracos 1 Double Beta experiment with emulsions?
GERDA: GERmanium Detector Array
NEMO-3 Experiment Neutrino Ettore Majorana Observatory
The SuperNEMO experiment A very low background experiment Jérémy ARGYRIADES, LAL Orsay.
M. Dracos, CEA, 10/04/ Double Beta experiment with emulsions?
Double beta decay Ruben Saakyan UCL 25 March 2004.
First results from NEMO 3 Experiment V. Vasiliev (ITEP), H. Ohsumi (Saga) and Ch. Marquet Nara, Japan, June 2003 NEMO collaboration.
Double beta search : experimental view Laurent SIMARD, LAL - Orsay 6 th Rencontres du Vietnam, Hanoi, 6 th -12 nd August 2006.
CUORICINO and CUORE Chiara Brofferio Università di Milano – Bicocca and INFN, Sez. di Milano NOW 2004 – Otranto 12 – 17 September 2004 On behalf of the.
NEMO-3  experiment First Results and Future Prospects Ruben Saakyan, UCL UK HEP Neutrino Forum The Cosener’s House, Abingdon.
Warsaw - NEMO initiative group Zenon Janas for Search for neutrinoless double  decay in NEMO-3 and SuperNEMO experiments Warszawa,
NEMO-3 Double Beta Decay Experiment: Last Results A.S. Barabash ITEP, Moscow (On behalf of the NEMO Collaboration)
ZSJ IFD UW Zenon Janas Poszukiwanie podwójnego bezneutrinowego rozpadu beta w eksperymentach NEMO-3 i SuperNEMO Kraków,
Status of R&D of the SuperNEMO experiment Gwénaëlle Broudin-Bay LAL Orsay GDR neutrino – Bordeaux – Oct
FIRST RESULTS OF THE NEMO 3 EXPERIMENT Laurent SIMARD LAL Orsay (France) HEP-EPS 2003 conference CENBG, IN2P3-CNRS et Université de Bordeaux, France CFR,
Recent Results of the NEMO 3 Experiment Ladislav VÁLA Czech Technical University in Prague NOW2006, 9 th – 16 th September 2006, Conca Specchiulla, Italy.
Probing neutrino mass with SuperNEMO Ruben Saakyan Ulisse at LSM Workshop 30 June 2008.
Status of the Se82 project Selenium production and purification JRA2-ILIAS Prague, April 20th, 2006, IDEA-N4 meetingDominique Lalanne.
Results of NEMO 3 and status of SuperNEMO Ladislav VÁLA on behalf of the NEMO 3 and SuperNEMO collaborations Institute of Experimental and Applied Physics.
NEMO-3 Experiment Neutrino Ettore Majorana Observatory FIRST RESULTS Xavier Sarazin 1 for the NEMO-3 Collaboration CENBG, IN2P3-CNRS et Université de Bordeaux,
Neutrino Ettore Majorana Observatory
9-June-2003NDM2003 M. Nomachi M. Nomachi OSAKA University and MOON collaboration MOON (Mo Observatory Of Neutrinos) for double beta decay Photo by
ILIASN4 Cascina, November 3rd, 2005Dominique Lalanne.
N4, Double beta network Second year… …and next Prague, April 20th, 2006, IDEA-N4 meeting Dominique Lalanne.
M. Wójcik for the GERDA Collaboration Institute of Physics, Jagellonian University Epiphany 2006, Kraków, Poland, 6-7 January 2006.
Neutrinoless double-beta decay and the SuperNEMO project. Darren Price University of Manchester 24 November, 2004.
Zakład Spektroskopii Jądrowej IFD UW Zenon Janas Poszukiwanie podwójnego bezneutrinowego rozpadu beta w eksperymencie NEMO-3 Warszawa,
Experiment TGV II Multi-detector HPGe telescopic spectrometer for the study of double beta processes of 106 Cd and 48 Ca For TGV collaboration: JINR Dubna,
Nd double beta decay search with SNO+ K. Zuber, on behalf of the SNO+ collaboration.
VIeme rencontres du Vietnam
Tracking (wire chamber) Shield radon, neutron,  Source foil (40 mg/cm 2 ) Scintillator + PMT 2 modules 2  3 m 2 → 12 m 2 Background < 1 event / month.
M. Wójcik Instytut Fizyki, Uniwersytet Jagielloński Instytut Fizyki Doświadczalnej, Uniwersytet Warszawski Warszawa, 10 Marca 2006.
IOP HEPP Matthew Kauer Double beta decay of Zr96 using NEMO- 3 and calorimeter R&D for SuperNEMO IOP HEPP April Matthew Kauer UCL London.
NEMO3 analysis and SuperNEMO development Benjamin Richards D14.
Compared sensitivities of next generation DBD experiments IDEA - Zaragoza meeting – 7-8 November 2005 C. Augier presented by X. Sarazin LAL – Orsay – CNRS/IN2P3.
ILIAS JRA2 : WG1+WG2 Se82, production and purification Cascina, November 3rd, 2005Dominique Lalanne.
Neutrino Ettore Majorana Observatory
28 May 2008NEMO-3 Neutrino081 NEMO-3 A search for double beta decay Robert L. Flack University College London On behalf of the NEMO-3 collaboration.
NEMO3 experiment: results G. Broudin-Bay LAL (CNRS/ Université Paris-Sud 11) for the NEMO collaboration Moriond EW conference La Thuile, March 2008.
Activities on double beta decay search experiments in Korea 1.Yangyang Underground laboratory 2.Double beta decay search with HPGe & CsI(Tl) 3.Metal Loaded.
Results of the NEMO-3 experiment (Summer 2009) Outline   The  decay  The NEMO-3 experiment  Measurement of the backgrounds   and  results.
Stefano Torre University College London for NEMO3 and SuperNEMO collaborations Half day IoP Meeting 12 Oct 2011 Outline 0νββ and 2νββ Observation technique.
Double Beta Decay Experiments Jeanne Wilson University of Sussex 29/06/05, RAL.
1st Year Talk1 PEP Violation Analysis with NEMO3 and Calorimeter R&D for SuperNEMO Anastasia Freshville.
By Matthew Kauer First Year Report – 15 June 07 Measurement of 2b2ν Half-Life of Zr96 and Lightguide Studies for SuperNEMO Calorimeter Matthew Kauer UCL.
1 Study of 48 Ca Double Beta Decay by CANDLES T. Kishimoto Osaka Univ.
Proposal to join NEMO-3  decay experiment P. Adamson, R. Saakyan, J. Thomas UCL 27 January 2003.
Nasim Fatemi-Ghomi, Group Christmass Meeting December Nasim Fatemi-Ghomi Double Beta Decay Study of 150 Nd at NEMO3 (The magic isotope!!)
1 Double Beta Decay of 150 Nd in the NEMO 3 Experiment Nasim Fatemi-Ghomi (On behalf of the NEMO 3 collaboration) The University of Manchester IOP HEPP.
Proposals for FP7 Zaragoza November 2005, IDEA meeting F. Piquemal (CEN Bordeaux-Gradignan)
Search for Neutrinoless Double Beta Decay with NEMO-3 Zornitza Daraktchieva University College London On behalf of the NEMO3 collaboration PANIC08, Eilat,
The NEMO3 Double Beta Decay Experiment Ruben Saakyan IoP meeting on Double Beta Decay Manchester 21 November 2007.
0νDBD Experimental Review and 136 Xe With HP Gas at CJPL 季向 东.
Yuri Shitov Imperial College London On behalf of the NEMO Collaboration A search for neutrinoless double beta decay: from NEMO-3 to SuperNEMO Moriond EW.
Search for Neutrinoless Double-Beta Decay Werner Tornow Duke University & Triangle Universities Nuclear Laboratory (TUNL) & Kavli-Tokyo Institute of the.
SuperNEMO collaboration
The COBRA Experiment: Future Prospects
Double Beta Decay - status and future
Status of 100Mo based DBD experiment
SuperNEMO 1st Report to Oversight Committee
Nu_2-WP3: R&D for neutrinoless double beta decay experiments
Search for 0nbb decay with SuperNEMO
Status of the Nd-150 enrichment project
• • • Ge measurements for SuperNEMO
Double Beta experiment with emulsions?
Presentation transcript:

Yu. Shitov, Imperial College, London  From NEMO-3 to SuperNEMO  Choice of nucleus for measurments  Calorimeter R&D  Low background R&D  Tracker R&D  Sensitivity simulations  Location choice  Schedule  Current status and roadmap of  -projects  Conclusion SuperNEMO: next generation project to search for neutrinoless double beta decay 1/25

Neutrino Ettore Majorana Observatory NEMO-3/SuperNEMO collaboration ~ 80 physicists, 12 countries, 27 laboratories. R&D Program for 02/ /2009 is being carring out. Major contributors: UK, France, Spain. Smaller but vital contributions from US, Russia, Czech Republic, Japan. USA MHC INL U Texas Japan U Saga U Osaka France CEN Bordeaux IReS Strasbourg LAL ORSAY LPC Caen LSCE Gif/Yvette UK UCL U Manchester Imperial College Finland U Jyvaskyla Russia JINR Dubna ITEP Moscow Kurchatov Institute Ukraine INR Kiev ISMA Kharkov Czech Republic Charles U Praha IEAP CTU Praha Morocco Fes U Slovakia (U. Bratislava) Spain U Valencia U Saragossa U Barcelona Poland U Warsaw (Neutrino Experiment on MOlybdenum – historical name) 2/25 XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

NEMO-3SuperNEMO T 1/2 (  ) > y < 0.3 – 1.3 eV T 1/2 (  ) > y < 40 – 100 meV Sensitivity 7 kg 100 Mo T 1/2 (  ) = y kg 82 Se|| 150 Nd T 1/2 (  ) = || y Mass of isotope Energy resolution (FWHM of the  ray) FWHM ~ 12% at 3 MeV (dominated by calorimeter ~ 8%) Total: FWHM ≤7 % at 1 MeV Calorimeter: ≤4 % at 3 MeV Efficiency  (  ) = 18 %  (  ) ~ 30 % Internal contaminations in the source foils in 208 Tl and 214 Bi 214 Bi < 300  Bq/kg 208 Tl <   Bq/kg (If 82 Se) 214 Bi < 10  Bq/kg 208 Tl <   Bq/kg Background  ~ 2 cts / 7 kg / y ( 208 Tl, 214 Bi) ~ 0.5 cnts/7 kg/y  =1, 208 Tl = Bi=0.5 cnts/100 kg/y From NEMO to SuperNEMO T 1/2 (  ) > ln 2  M  e  T obs N 90 N A A  NEMO-3 successful experience shows us that technique can be extrapolated for larger mass next generation detector to reach new sensitivity level. 3/25 XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

Plane geometry Top view Side view Source (40 mg/cm 2 ) 12m 2, tracking volume (~3000 channels) and calorimeter (~1000 PMT) Modular (~5 kg of enriched isotope/module) 5 m 1 m 4 m 100 kg: 20 modules ~ channels for drift chamber ~ / channels for 5’’/8’’ PMT SuperNEMO basic design 4 m 4/25 XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

Shell Model: Caurier et al. (2004)&private com. QRPA Simkovic et al. (1999) Stoica et al. (2001) Suhonen et al. (1998 and 2003) Rodin, Simkovic (2005) Recent calculations: Uncertainties in nuclear matrix elements (NME) theoretical calculations – essential problem Nucleus choice depends on:  enrichment possibilities  experimental techniques  NME value (not very strong due to calculation uncertainties)  Q  values (phase space factor, background)  high  life-time Choise of nucleus for measurements 5/25 XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

a)Compilation of QRPA & Shell model (MEDEX'07 workshop) b)Shell model only c)Deformation is not taken into account NucleusQ  (keV) T 1/2 (  ), y G , y -1 √ G  /G  76Ge M   a) Abundance(%) 48 Ca · b) Ge · Se · Zr33502· Mo · Cd · Te8672.5·10 24 (geo) Te · Xe Nd33679· c) 5.6 Choise of nucleus for measurements Two main options: 82 Se and 150 Nd. 82 Se obtained by centrifugation. Impossible for 150 Nd, only laser enrichment 6/25 XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

Chemical purification at INL (US) Purification Goal: 208 Tl < 2  Bq/kg 214 Bi < 10  Bq/kg g of nat Se done -1 kg 82 Se done All funded by ILIAS  Collaboration with INL (chemical method) Installation of NEMO3 foils (LSM) Source foils production Goal: 250 m 2 of 82 Se foils of 40 mg/cm 2 NEMO3: ITEP (Moscow) powder + glue (60mg/cm 2 ) =>Extrapolation 100 kg possible if very clean conditions. Or new technique is in test in LAL Enrichment Goal: To be able to produce 100 kg of 82 Se - 30 kg of 76 Ge for GERDA kg of 82 Se possible in 3 years - Distillation of 82 Se (for purification) possible Distillation of 116 Cd tested with NEMO kg of 82 Se funded by ILIAS ( * ) ( )  Facilities exist in Russia -1 kg (ITEP, done&checked) + 2 kg of nat Se done  ITEP; Collaboration with Kurchatov and Nizhnij-Novgorod institutes (distillation) R&D for 82 Se sources ECP (Electro-Chemical Plant, Svetlana) Zelenogorsk (Siberia) 7/25 XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

 technically it is potencially possible to enrich Nd (MENPHIS/CEA), strongly supported by the international double beta decay community  150 Nd advantages - no constraint for Radon and 214 Bi - constraint less severe for 208 Tl - phase space: 100 kg 150 Nd  kg of 76 Ge  400 kg of 82 Se or 130 Te  4000 kg of 136 Xe - nuclear matrix element : could be good but ? - if SUSY is a mediator : very good for Nd - search to  -transition to excited state level very promising too  Nd is the candidate for SuperNEMO (2 electrons search) and for SNO++ (pure calorimeter) R&D for 150 Nd 8/25 XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

Evaporator Dye laser chain Yag laser Copper vapor laser Production of 200 kg of enriched U at 2.5 % in few days Results in agreement with simulation expectation Design : 2001 Building : st test : early st full scale exp. : june 2003 MENPHIS simulation shows that enrichment of 150 Nd is doable (ton scale), ~ 100 kg 48 Ca enrichment is theoriticaly doable. Studies must be done Expression of Interest of SuperNEMO, SNO++ to keep MENPHYS for Nd enrichment 150 Nd R&D: MENPHIS facility support Based on AVLIS (Atomic Vapor Laser Isotope Separation) method of enrichement 9/25 XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

Calorimeter R&D Energy resolution is a combination of energy losses in foil and calorimeter  E/E Goal: 7-8%/√E  4% at 3 MeV ( 82 Se Q  ) Studies: –Material: organic plastic (PS) or liquid (LS) scintillators –Geometry and shape (block, bar) –Size –Reflective coating –PMT High QE Ultra-low background Factor of 2 compared to NEMO3! BC404 PS in teflon Hamamatsu high-QE PMT 207 Bi source D E/E = 6.5% at 1 MeV  3.8% at 3 MeV Required resolution achieved for small ~5-6 cm samples for both LS and PS scintillators. Bicron is best so far but other manufacturers competing (ISM, Kharkov, Dubna) Real challenge starts from scintillators with ~10 x 10 cm surface size. Cuvette with LS 10/25 XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

Calorimeter R&D Focus on large block studies (~20cm, 8” PMT) Four routes pursued – 8” PMT + plastic block – 8” PMT + liquid scintillator – 8” PMT + hybrid (liquid + plastic) scintillator – 2m scint. bar with 3” or 5” PMTs PMTs –Working closely with manufacturers: Hamamatsu, Photonis, ETL –Real breakthrough in high-QE PMTs from Hamamatsu and Photonis: 43% QE –First large (8”) high-QE Hamamatsu PMT is under test –Deep involvement in ultra-low background PMT development (especially Photonis) Enhanced reflectors available. 98% reflectivity instead of usual 93% First tests with high-QE 8’’ PMT are encouraging: 8%-8/5% for LS/PS with cm. Further intensive tests are in progress. Plan B: 3”/5” high QE PMTs and larger number of channels. Decision on calorimeter design in December ” High-QE Hamamatsu PMT 11/25 XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

SC bars double sided with PM. Only ~ 3000 relatively cheap (3’’||5’’) PM (~ ’’ PM in basic design). More compact, less background from PM, but worse resolution (~10-11%). Simulations are in progress. Alternative SuperNEMO sandwich bar design 12 m 11 m 12/25 XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

R&D for bar scintillators 11-12% resolution has been obtained without optimization New tests with improved setup are in progress. 13/25 XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

Tracking (wire chamber) Shield radon, neutron,  Source foil (40 mg/cm 2 ) Scintillator + PMT 2 modules 2  3 m 2 → 12 m 2 Background < 1 event / month   (164  s)   (300 ns) 232 Th 212 Bi (60.5 mn) 208 Tl (3.1 mn) 212 Po 208 Pb (stable) 36% 238 U 214 Bi (19.9 mn) 210 Tl (1.3 mn) 214 Po 210 Pb 22.3 y 0.021% Bi-Po Process Q  ( 212 Bi) = 2.2 MeV ee e  prompt  T 1/2 ~ 300 ns E deposited ~ 1 MeV Delay  Low background measurement R&D: BiPo detection method To measure contaminations of 208 Tl and 214 Bi in source foils before installation in SuperNEMO Goal: ~5kg of foil (12m 2, 40mg/cm 2 ) in one month with a sensitivity of – 208 Tl < 2  Bq/kg – 214 Bi < 10  Bq/kg (e.g. sensitivity limit of “standard” 400cm 3 HPGe detector 60  Bq/kg in 208 Tl and 200  Bq/kg in 214 Bi for 1 month) 14/25 XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

BiPo-1 capsule BiPo-1: 10 capsules in operation since 12/2007, current sensitivity < 7.5 µBq/10m 2 x 40 mg foil BiPo-2 and Phoswhich: started in 04/2008: results expected in the end of 2008 BiPo-2 Low background measurement R&D: BiPo prototypes BiPo-1 capsule Set of BiPo-1 capsules 15/25 XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

Drift cell worked in Geiger mode Goal: tracker performance optimization sizes of wires and cell (  3-5 cm) wire material, gas mixture, readout simulation for optimal tracker desing desing of automatic wiring equipment R&D for tracker 9-cell prototype (in photo) has been built and tested with cosmics in Manchester University: - perfomances are ok, optimized for autowiring; - different configurations (8-12 cathod wires per cell) have been tested. 3cm, 4.4 cm and 5cm cells have been tested with different setups using laser. Preliminary results show the close performances. 90-cell prototype (below) is in production and will be ready this summer. final choise of SuperNEMO tracker: 12/ Transverse position from electron drift times - Longitudinal position from plasma propagation times Revised 90-cell prototype 16/25 XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

R&D for wiring robot 17/25 XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

82 Se 150 Nd “Conservative” scenario 82 Se: T 1/2 ( 0n ) = y depending on final mass, background and efficiency  0.06 – 0.1 eV (includes uncertainty in T 1/2 ) – MEDEX’07 NME 150 Nd: T 1/2 ( 0n ) = y  eV (but deformation not taken into account) Sensitivity Simulations 18/25 XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

Possible SuperNEMO location cites

Main Hall 40 x 15 m (h=11 m) RAILWAY TUNNEL ROAD TUNNEL Ultra-Low background Facility 15 x 10 m (h=8 m) Old Laboratory 20 x 5 m (h=4.5 m) installations, clean rooms & offices Access gallery Characteristic of the new LSC Depth900 m (2450 mwe) Main experiment al hall 600 m 2 (oriented to CERN) Low background lab 150 m 2 Clean room45 m 2 (100/1000 type) General services 135 m 2 Offices80 m 2 -BiPo -SuperNEMO -- Dark matter -- …. New LSC Canfranc laboratory 20/25 XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

Could be available for 2012 Future extension of LSM laboratory 21/25 XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

SuperNEMO Design Study Schedule Summary NEMO3 Running Running full detector in 2014 Target sensitivity ( eV) in 2016 construction of 20 modules SuperNEMO modules installation at new LSM Preparation of new LSM site BiPoinstallation BiPo1Canfranc/LSMBiPoconstruction BiPo Canfranc 1-5 SuperNEMO modules running at Canfranc running at Canfranc SuperNEMO 1 st module construction 2014 SuperNEMO schedule summary 22/25 XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

ExperimentIsotopekgT 1/2 yr, 90% CLm *, meV Start-up timescale Status HM 76 Ge15> finished KDHK claim 76 Ge15 ( ) (3  ) finished NEMO Mo (expect. 2009) running CUORICINO 130 Te11> (current) running CUORE 130 Te approved GERDA, Phase I 76 Ge approved Phase II 76 Ge~ approved EXO Xe approved EXO 1t 136 Xe R&D SuperNEMO 82 Se/ 150 Nd 100+(1-2) R&D COBRA 116 Cd ?R&D MOON II 100 Mo ?R&D * Matrix elements from MEDEX’07 or provided by experiments 0nbb experiments overview World-wide double beta-decay projects 23/25 XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

HM Claim NEMO 3 CUORICINO, EXO-200 GERDA SuperNEMO CUORE,EXO , 1t experiments (1 or 2) >2020, >10t experiment Roadmap for double beta-decay projects 24/25 XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008

- The 0  decay is a test of physics beyond the Standard Model by the search of the leptonic number violation and would determine the nature of the neutrino (Majorana), absolute neutrino mass scale and neutrino hierarchy. - Several experiments are needed to measure different sources with several techniques. - NEMO-3 technique can be extrapolated at ~100 kg to be sensitive to y Only tracko-calo (SuperNEMO) and gas TPC can directly register  -decay. In the case of discovery only direct methods will allow to determine the process leading to  : light neutrino exchange, right-handed current, supersymmetry, etc. - 3-year SuperNEMO R&D program is carrying out and it is in good shape. Key challenges are calorimeter resolution, isotope choice, and radio purity. Based on design study results full proposal for 100+ kg detector in “Last minute” isotope change possible. E.g. CUORE sees the signal in 130 Te. -First module 2010/11 -All 20 modules ~2013 Target sensitivity: meV by 2016, which is competitive with the other next generation  -experiments. - The next generation of bb(0n) detectors will improve by a factor of 100/10 the sensitivity to T1/2 / respectively. Conclusion 25/25 XX Rencontres de Blois, Shitov Yu., ICL, 21/05/2008