AES, ANL, Boeing, Columbia U., CTD, GA, GIT, LLNL, INEEL, MIT, ORNL, PPPL, SNL, SRS, UCLA, UCSD, UIIC, UWisc NSO Collaboration FIRE.

Slides:



Advertisements
Similar presentations
Physics Basis of FIRE Next Step Burning Plasma Experiment Charles Kessel Princeton Plasma Physics Laboratory U.S.-Japan Workshop on Fusion Power Plant.
Advertisements

Extension of IEA Implementing Agreement on Large Tokamak Facilities Presented to Committee on Energy Research Technologies October 18-19, 2005 Paris, France.
ARIES-Advanced Tokamak Power Plant Study Physics Analysis and Issues Charles Kessel, for the ARIES Physics Team Princeton Plasma Physics Laboratory U.S.-Japan.
Stability, Transport, and Conrol for the discussion Y. Miura IEA/LT Workshop (W59) combined with DOE/JAERI Technical Planning of Tokamak Experiments (FP1-2)
VLT Report the fusion trend line Stan Milora (ORNL) and Richard Nygren (SNL) FNST/PFC/MASCO Meeting Aug 2-6, UCLA.
ELECTRON CYCLOTRON SYSTEM FOR KSTAR US-Korea Workshop Opportunities for Expanded Fusion Science and Technology Collaborations with the KSTAR Project Presented.
Implications of Plasma-Material Interactions Dennis Whyte, MIT PSFC & PSI Science Center With contributions from Jeff Brooks (Purdue), Russ Doerner (UCSD),
Steps Toward a Compact Stellarator Reactor Hutch Neilson Princeton Plasma Physics Laboratory ARIES Team Meeting October 3, 2002.
Summary and Closing Remarks Farrokh Najmabadi University of California San Diego Presentation to: ARIES Program Peer Review August 18, 2000 UC San Diego.
Physics Analysis for Equilibrium, Stability, and Divertors ARIES Power Plant Studies Charles Kessel, PPPL DOE Peer Review, UCSD August 17, 2000.
Contributions of Burning Plasma Physics Experiment to Fusion Energy Goals Farrokh Najmabadi Dept. of Electrical & Computer Eng. And Center for Energy Research.
Burning Plasma Gap Between ITER and DEMO Dale Meade Fusion Innovation Research and Energy US-Japan Workshop Fusion Power Plants and Related Advanced Technologies.
FY 2000 System Studies Activities Farrokh Najmabadi VLT/FWP Meeting April 6-9, 1999 OFES Headquarters, Germantown Electronic copy:
Optimization of a Steady-State Tokamak-Based Power Plant Farrokh Najmabadi University of California, San Diego, La Jolla, CA IEA Workshop 59 “Shape and.
DEMO Parameters – Preliminary Considerations David Ward Culham Science Centre This work was jointly funded by the EPSRC and by EURATOM.
Physics Issues and Trade-offs in Magnetic Fusion Power Plants Farrokh Najmabadi University of California, San Diego, La Jolla, CA APS April 2002 Meeting.
1 "Magnetic Fusion: Issues, Metrics, Gaps and a Road Map to Energy " Dale Meade Fusion Innovation Research and Energy® Princeton, NJ ARIES Project Meeting.
Y. Sakamoto JAEA Japan-US Workshop on Fusion Power Plants and Related Technologies with participations from China and Korea February 26-28, 2013 at Kyoto.
C Gormezano, S Ide ITPA SSO&EP IEA-LT/ ITPA Collaboration 1 Steady State Operation & Energetic Particles Advanced Scenario need the same development path.
Recent JET Experiments and Science Issues Jim Strachan PPPL Students seminar Feb. 14, 2005 JET is presently world’s largest tokamak, being ½ linear dimension.
Prof. F.Troyon“JET: A major scientific contribution...”25th JET Anniversary 20 May 2004 JET: A major scientific contribution to the conception and design.
Advanced Tokamak Plasmas and the Fusion Ignition Research Experiment Charles Kessel Princeton Plasma Physics Laboratory Spring APS, Philadelphia, 4/5/2003.
Status and Prospects of Nuclear Fusion Using Magnetic Confinement Hartmut Zohm Max-Planck-Institut für Plasmaphysik, Garching, Germany Invited Talk given.
ITPA - IOS st Oct Kyoto E. Joffrin JET programme with the ILW in and relations with the IOS Joint experiments.
ASIPP EAST Overview Of The EAST In Vessel Components Upgraded Presented by Damao Yao.
Progress in ARIES-ACT Study Farrokh Najmabadi UC San Diego Japan/US Workshop on Power Plant Studies and Related Advanced Technologies 8-9 March 2012 US.
Advanced Tokamak Regimes in the Fusion Ignition Research Experiment (FIRE) 30th Conference on Controlled Fusion and Plasma Physics St. Petersburg, Russia.
AES, ANL, Boeing, Columbia U., CTD, GA, GIT, LLNL, INEEL, MIT, ORNL, PPPL, SNL, SRS, UCLA, UCSD, UIIC, UWisc FIRE Collaboration FIRE.
Managed by UT-Battelle for the Department of Energy Stan Milora, ORNL Director Virtual Laboratory for Technology 20 th ANS Topical Meeting on the Technology.
US ITER UFA Meeting APS-DPP Savannah, GA Ned Sauthoff (presented by Dale Meade) November 15, 2004 US In-kind Contributions and Starting Burning Plasma.
V. A. Soukhanovskii NSTX Team XP Review 31 January 2006 Princeton, NJ Supported by Office of Science Divertor heat flux reduction and detachment in lower.
AES, ANL, Boeing, Columbia U., CTD, GA, GIT, LLNL, INEEL, MIT, ORNL, PPPL, SNL, SRS, UCLA, UCSD, UIIC, UWisc FIRE Collaboration FIRE.
Discussions and Summary for Session 1 ‘Transport and Confinement in Burning Plasmas’ Yukitoshi MIURA JAERI Naka IEA Large Tokamak Workshop (W60) Burning.
NSTX-U NSTX-U PAC-31 Response to Questions – Day 1 Summary of Answers Q: Maximum pulse length at 1MA, 0.75T, 1 st year parameters? –A1: Full 5 seconds.
FIRE Activities with Emphasis on Technology Needs VLT PAC Meeting MIT September 4, 2003 AES, ANL, Boeing, Columbia U., CTD, GA, GIT, LLNL, INEEL, MIT,
Current Drive for FIRE AT-Mode T.K. Mau University of California, San Diego Workshop on Physics Issues for FIRE May 1-3, 2000 Princeton Plasma Physics.
ARIES-AT Physics Overview presented by S.C. Jardin with input from C. Kessel, T. K. Mau, R. Miller, and the ARIES team US/Japan Workshop on Fusion Power.
Global Stability Issues for a Next Step Burning Plasma Experiment UFA Burning Plasma Workshop Austin, Texas December 11, 2000 S. C. Jardin with input from.
Fusion Fire Powers the Sun Can we make Fusion Fire on earth? National FIRE Collaboration AES, ANL, Boeing, Columbia U., CTD, GA, GIT, LLNL, INEEL, MIT,
1 Fusion Fire Powers the Sun Can we make Fusion Fire on earth?
Summary and Closing Remarks Farrokh Najmabadi UC San Diego Presentation to ARIES Program Peer Review August 29, 2013, Washington, DC.
1) Disruption heat loading 2) Progress on time-dependent modeling C. Kessel, PPPL ARIES Project Meeting, Bethesda, MD, 4/4/2011.
Compact Stellarator Approach to DEMO J.F. Lyon for the US stellarator community FESAC Subcommittee Aug. 7, 2007.
EJD IAEA H-mode WS,, September 28, Overview Introduction — steady-state performance requirements -Global DIII-D and NSTX progress Plasma control.
ITER STEADY-STATE OPERATIONAL SCENARIOS A.R. Polevoi for ITER IT and HT contributors ITER-SS 1.
AES, ANL, Boeing, Columbia U., CTD, GA, GIT, LLNL, INEEL, MIT, ORNL, PPPL, SNL, SRS, UCLA, UCSD, UIIC, UWisc NSO Collaboration Implications.
B WEYSSOW 2009 Coordinated research activities under European Fusion Development Agreement (addressing fuelling) Boris Weyssow EFDA-CSU Garching ITPA 2009.
PERSISTENT SURVEILLANCE FOR PIPELINE PROTECTION AND THREAT INTERDICTION International Plan for ELM Control Studies Presented by M.R. Wade (for A. Leonard)
AES, ANL, Boeing, Columbia U., CTD, GA, GIT, LLNL, INEEL, MIT, ORNL, PPPL, SNL, SRS, UCLA, UCSD, UIIC, UWisc FIRE Collaboration High-
Improved performance in long-pulse ELMy H-mode plasmas with internal transport barrier in JT-60U N. Oyama, A. Isayama, T. Suzuki, Y. Koide, H. Takenaga,
FIRE Engineering John A. Schmidt NSO PAC Meeting February 27, 2003.
AES, ANL, Boeing, Columbia U., CTD, GA, GIT, LLNL, INEEL, MIT, ORNL, PPPL, SNL, SRS, UCLA, UCSD, UIIC, UWisc NSO Collaboration Thoughts.
Steady State Discharge Modeling for KSTAR C. Kessel Princeton Plasma Physics Laboratory US-Korea Workshop - KSTAR Collaborations, 5/19-20/2004.
Physics Analysis and Flexibility Issues for FIRE NSO PAC-2 Meeting January 17-18, 2001 S. C. Jardin with input from C.Kessel, J.Mandrekas, D.Meade, and.
Approach for a High Performance Fusion Power Source Pathway Dale Meade Fusion Innovation Research and Energy ARIES Team Meeting March 3-4, 2008 UCSD, San.
Comments on Fusion Development Strategy for the US S. Prager Princeton Plasma Physics Laboratory FPA Symposium.
045-05/rs PERSISTENT SURVEILLANCE FOR PIPELINE PROTECTION AND THREAT INTERDICTION Taming The Physics For Commercial Fusion Power Plants ARIES Team Meeting.
Optimization of a High-  Steady-State Tokamak Burning Plasma Experiment Based on a High-  Steady-State Tokamak Power Plant D. M. Meade, C. Kessel, S.
AES, ANL, Boeing, Columbia U., CTD, GA, GIT, LLNL, INEEL, MIT, ORNL, PPPL, SNL, SRS, UCLA, UCSD, UIIC, UWisc FIRE Collaboration FIRE.
MHD Issues and Control in FIRE C. Kessel Princeton Plasma Physics Laboratory Workshop on Active Control of MHD Stability Austin, TX 11/3-5/2003.
20th IAEA Fusion Energy Conference, 2004 Naka Fusion Research Establishment, Japan Atomic Energy Research Institute Stationary high confinement plasmas.
MCZ MCZ NCSX Mission Acquire the physics data needed to assess the attractiveness of compact stellarators; advance understanding.
Possible Strategies for a Broadened Fast Track Approach to Fusion Energy Dale Meade Princeton Plasma Physics laboratory Symposium.
FIRE Advanced Tokamak Progress C. Kessel Princeton Plasma Physics Laboratory NSO PAC 2/27-28/2003, General Atomics 1.0D Operating Space 2.PF Coils 3.Equilibrium/Stability.
Advanced Tokamak Modeling for FIRE C. Kessel, PPPL NSO/PAC Meeting, University of Wisconsin, July 10-11, 2001.
1 AES, ANL, Boeing, Columbia U., CTD, GA, GIT, LLNL, INEEL, MIT, ORNL, PPPL, SNL, SRS, UCLA, UCSD, UIIC, UWisc FIRE Collaboration
4 th General Scientific Assembly of Asia Plasma and Fusion Association (APFA) Hangzhou, China, October , 2003 AES, ANL, Boeing, Columbia U., CTD,
AES, ANL, Boeing, Columbia U., CTD, GA, GIT, LLNL, INEEL, MIT, ORNL, PPPL, SNL, SRS, UCLA, UCSD, UIIC, UWisc FIRE Collaboration FIRE.
J. Menard for the MHD Science Focus Group Tuesday, November 22, 2005
Stellarator Program Update: Status of NCSX & QPS
Presentation transcript:

AES, ANL, Boeing, Columbia U., CTD, GA, GIT, LLNL, INEEL, MIT, ORNL, PPPL, SNL, SRS, UCLA, UCSD, UIIC, UWisc NSO Collaboration FIRE - A Test Bed for Advanced DEMO (ARIES) Physics and Plasma Technology Dale Meade Princeton Plasma Physics Laboratory 7th International Symposium on Fusion Nuclear Technology Tokyo, Japan May 24, 2005

High Power Density P f /V~ 6 MWm -3 ~10 atm  n ≈ 4 MWm -2 High Gain Q ~ n  E T ~ 6x10 21 m -3 skeV P  /P heat = f  ≈ 90% Low rotation Steady-State ~ 90% Bootstrap ARIES Economic Studies have Defined the Plasma Requirements for an Attractive Fusion Power Plant Plasma Exhaust P heat /R x ~ 100MW/m Helium Pumping Tritium Retention Plasma Control Fueling Current Drive RWM Stabilization Significant advances are needed in each area. A Broad International Approach is needed to provide the R&D Needed for DEMO

Can a fusion fire be controlled and sustained? A fusion plasma will be a complex non-linearly coupled system that can not be simulated by a large number non-burning experiments: one addressing confinement, another addressing MHD, etc as separate issues New Issues for a self-heated Burning Plasma (Q > 10) include: Global energy balance Local burn profile control Alpha ash removal Bootstrap Current Profile control (f bs /I p > 70%) The difficulty of controlling and sustaining a fusion fire should not be underestimated. - a second burning plasma experiment would greatly reduce the risk of burning plasma problems in ITER.

Advanced Toroidal Physics (100% Non-inductively Driven AT-Mode) Q~ 5 as target, higher Q not precluded f bs = I bs /I p ~ 80% as target, ARIES-RS/AT≈90%  N ~ 4.0, n = 1 wall stabilized, RWM feedback Quasi-Stationary Burn Duration (use plasma time scales) Pressure profile evolution and burn control>  E Alpha ash accumulation/pumping>  He Plasma current profile evolution~ 2 to 5  skin Divertor pumping and heat removal>  divertor First wall heat removal> 1  first-wall FIRE Physics Objectives Burning Plasma Physics (Conventional Inductively Driven H-Mode) Q~10 as target, higher Q not precluded f  = P  /P heat ~ 66% as target, up to Q = 25 TAE/EPMstable at nominal point, access to unstable

Fusion Ignition Research Experiment (FIRE) R = 2.14 m, a = m B = 10 T, (~ 6.5 T, AT) I p = 7.7 MA, (~ 5 MA, AT) P ICRF = 20 MW P LHCD ≤ 30 MW (Upgrade) P fusion ~ 150 MW Q ≈ 10, (5 - 10, AT) Burn time ≈ 20s (2  CR - Hmode) ≈ 40s (< 5  CR - AT) Tokamak Cost = $350M (FY02) Total Project Cost = $1.2B (FY02) at new site. 1,400 tonne LN cooled coils Mission: to attain, explore, understand and optimize magnetically-confined fusion-dominated plasmas

FIRE is Based on ARIES-RS Vision 40% scale model of ARIES-RS plasma ARIES-like all metal PFCs Actively cooled W divertor Be tile FW, cooled between shots Close fitting conducting structure ARIES-level toroidal field LN cooled BeCu/OFHC TF ARIES-like current drive technology FWCD and LHCD (no NBI/ECCD) No momentum input Site needs comparable to previous DT tokamaks (TFTR/JET). T required/pulse ~ TFTR ≤ 0.3g-T

FIRE has Passed DOE Physics Validation Review The DOE FIRE Physics Validation Review (PVR) was held March in Germantown. The Committee included: S. Prager, (Chair) Univ of Wisc, Earl Marmar, MIT, N. Sauthoff PPPL, F. Najmabadi, UCSD, Jerry Navratil, Columbia (unable to attend), John Menard PPPL, R. Boivin GA, P. Mioduszewski ORNL, Michael Bell, PPPL, S. Parker Univ of Co, C. Petty GA, P. Bonoli MIT, B. Breizman Texas, PVR Committee Consensus Report: The FIRE team is on track for completing the pre-conceptual design within FY 04. FIRE would then be ready to launch the conceptual design. The product of the FIRE work, and their contributions to and leadership within the overall burning plasma effort, is stellar. Is the proposed physical device sufficiently capable and flexible to answer the critical burning plasma science issues proposed above? The 2002 Snowmass study also provided a strong affirmative answer to this question. Since the Snowmass meeting the evolution of the FIRE design has only strengthened ability of FIRE to contribute to burning plasma science.

Extended H-Mode and AT operating ranges Benefits of FIRE high triangularity, DN and moderate n/n G Extended H-Mode Performance based ITPA scaling with reduced  degradation, and ITPA Two Term (pedestal and core) scaling (Q > 20). Hybrid modes (AUG, DIII-D,JET) are excellent match to FIRE n/n G, and projects Q > 20. Slightly peaked density profiles (n(0)/ = 1.25)enhance performance. Elms mitigated by high triangularity, disruptions in new ITPA physics basis will be tempered somewhat. Significant Progress on Existing Tokamaks Improves FIRE (and ITER) Design Basis since FESAC and NRC Reviews

New ITPA  E Scaling Opens Ignition Regime for FIRE Systematic scans of  E vs  on DIII-D and JET show little degradation with  in contrast to the ITER 98(y, 2) scaling which has  E ~  A new confinement scaling relation developed by ITPA has reduced adverse scaling with  see eq. 10 in IAEA-CN-116/IT/P3-32. Cordey et al. A route to ignition is now available if high  N regime can be stabilized. Stable side Unstable side

FIRE Conventional H-Mode Operating Range Expanded Nominal operating point Q =10 P f = 150 MW, 5.5 MWm -3 Power handling improved P f ~ 300 MW, 10 MWm -3 Physics basis improved (ITPA) DN enhances  E  N DN reduces Elms Hybrid mode has Q ~ 20 Engineering Design Improved Pulse repetition rate tripled divertor & baffle integrated Advanced DEMO power density of MWm -3 could be produced.

“Steady-State” High-  Advanced Tokamak Discharge on FIRE P f /V = 5.5 MWm -3  n ≈ 2 MWm -2 B = 6.5T  N = 4.1 f bs = 77% 100% non-inductive Q ≈ 5 H98 = 1.7 n/n GW = 0.85 Flat top Duration = 48  E = 10  He = 4  cr FT/P7-23

FIRE AT Mode Limited by First Wall not TF Coil Q = 5 Nominal operating point Q = 5 P f = 150 MW, P f /V p = 5.5 MWm -3 (ARIES) ≈ steady-state 4 to 5  CR Physics basis improving (ITPA) required confinement H factor and  N attained transiently C-Mod LHCD experiments will be very important First Wall is the main limit Improve cooling revisit FW design

25 MW/m 2

Cool 1st Wall ARIES AT (  N ≈ 5.4, f bs ≈ 90%) 12 OFHC TF (≤ 7 T) Opportunities to Optimize FIRE for the Study of ARIES AT Physics and Plasma Technologies time (sec)

RWM Coil Concept for ITER Baseline RWM coils located outside TF coils Applying FIRE-Like RWM Feedback Coils to ITER Increases  limit for n = 1 from  N = 2.5 to ~4 Integration and Engineering feasibility of internal RWM coils is under study. VALEN Analysis Columbia University No-wall limit FIRE-like RWM coils would have large stabilizing effect on n=1 RWM Coils in every third port, no shield module G. Navratil, J. Bialek Columbia University FIRE-like RWM coils would be located inside the vacuum vessel behind shield module but inside the vacuum vessel on the removable port plugs. Baseline RWM Coils

The proposed RWM Coils would be in the Front Assembly of Every 3rd Mid-Plane Port Plug Assembly RWM coils located behind shielding module on Port Plug

ITER with FIRE would provide a strong basis for Adv. DEMO FIREARIES-RS ITER FIREARIES-RS Fusion Gain10(H), 5(AT) 25 (AT) Fusion Power (MW) Power Density(MWm -3 ) Wall Loading  n (MWm -2 ) Pulse Duration (s) (  CR, % equilibrated) , 86 - >99.9% , 86 - >99% 20,000,000 steady Mass of Fusion Core (tonnes)23,0001,40013,000

Concluding Remarks DOE Physics Validation Review of FIRE passed. March 30-31, 2004 FIRE Pre-Conceptual Activities are completed. September 30, 2004 Ready to begin FIRE Conceptual Design Activities. Now Areas of additional R&D for FIRE and ITER include: high power density all metal PFCs and actively cooled first wall internal feedback coils to allow higher beta (power density) plasmas A Broadened Approach with FIRE as a supporting burning plasma experiment would reduce ITER Technical risk and help fully exploit ITER’s ultimate capability to help provide the basis for advanced DEMO.