Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 5.1: State Estimation Jürgen Sturm Technische Universität München.

Slides:



Advertisements
Similar presentations
Motivating Markov Chain Monte Carlo for Multiple Target Tracking
Advertisements

Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 2.4: Homework Discussion (of last week) Jürgen Sturm Technische.
Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 1.3: Flying Principle of a Quadrotor Jürgen Sturm Technische.
State Estimation and Kalman Filtering CS B659 Spring 2013 Kris Hauser.
Monte Carlo Localization for Mobile Robots Karan M. Gupta 03/10/2004
Robot Localization Using Bayesian Methods
IR Lab, 16th Oct 2007 Zeyn Saigol
Introduction to Probabilistic Robot Mapping. What is Robot Mapping? General Definitions for robot mapping.
1 Slides for the book: Probabilistic Robotics Authors: Sebastian Thrun Wolfram Burgard Dieter Fox Publisher: MIT Press, Web site for the book & more.
Bayesian Robot Programming & Probabilistic Robotics Pavel Petrovič Department of Applied Informatics, Faculty of Mathematics, Physics and Informatics
Bayes Filters Pieter Abbeel UC Berkeley EECS Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics TexPoint fonts used in EMF. Read the.
Tracking Objects with Dynamics Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem 04/21/15 some slides from Amin Sadeghi, Lana Lazebnik,
Autonomous Robot Navigation Panos Trahanias ΗΥ475 Fall 2007.
Navigation Jeremy Wyatt School of Computer Science University of Birmingham.
Probabilistic Robotics Introduction Probabilities Bayes rule Bayes filters.
Stanford CS223B Computer Vision, Winter 2006 Lecture 11 Filters / Motion Tracking Professor Sebastian Thrun CAs: Dan Maynes-Aminzade, Mitul Saha, Greg.
CS 188: Artificial Intelligence Fall 2009 Lecture 19: Hidden Markov Models 11/3/2009 Dan Klein – UC Berkeley.
Slam is a State Estimation Problem. Predicted belief corrected belief.
Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 3.1: 3D Geometry Jürgen Sturm Technische Universität München.
Bayesian Filtering for Robot Localization
Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 2.1: Recap on Linear Algebra Daniel Cremers Technische Universität.
Kalman filter and SLAM problem
Mobile Robot controlled by Kalman Filter
Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 3.2: Sensors Jürgen Sturm Technische Universität München.
From Bayesian Filtering to Particle Filters Dieter Fox University of Washington Joint work with W. Burgard, F. Dellaert, C. Kwok, S. Thrun.
Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 6.2: Kalman Filter Jürgen Sturm Technische Universität München.
Autonomous Navigation for Flying Robots Lecture 2.2: 2D Geometry
Simultaneous Localization and Mapping Presented by Lihan He Apr. 21, 2006.
Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 2.3: 2D Robot Example Jürgen Sturm Technische Universität München.
TGI Friday’s Mistletoe Drone /12/10/mistletoe- quadcopter-draws- blood/
Visibility Graph. Voronoi Diagram Control is easy: stay equidistant away from closest obstacles.
1 Robot Environment Interaction Environment perception provides information about the environment’s state, and it tends to increase the robot’s knowledge.
Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 4.1: Motors and Controllers Jürgen Sturm Technische Universität.
Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 4.2 : Feedback Control Jürgen Sturm Technische Universität München.
Forward-Scan Sonar Tomographic Reconstruction PHD Filter Multiple Target Tracking Bayesian Multiple Target Tracking in Forward Scan Sonar.
Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 6.1: Bayes Filter Jürgen Sturm Technische Universität München.
Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 5.2: Recap on Probability Theory Jürgen Sturm Technische Universität.
The Hardware Design of the Humanoid Robot RO-PE and the Self-localization Algorithm in RoboCup Tian Bo Control and Mechatronics Lab Mechanical Engineering.
Real-Time Simultaneous Localization and Mapping with a Single Camera (Mono SLAM) Young Ki Baik Computer Vision Lab. Seoul National University.
Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 5.3: Reasoning with Bayes Law Jürgen Sturm Technische Universität.
4 Proposed Research Projects SmartHome – Encouraging patients with mild cognitive disabilities to use digital memory notebook for activities of daily living.
Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 1.2: Why Quadrotors? Jürgen Sturm Technische Universität München.
State Estimation and Kalman Filtering
Robotics Club: 5:30 this evening
Autonomous Navigation for Flying Robots Lecture 6.3: EKF Example
Inferring High-Level Behavior from Low-Level Sensors Donald J. Patterson, Lin Liao, Dieter Fox, and Henry Kautz.
Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 1.1: Welcome Jürgen Sturm Technische Universität München.
Probabilistic Robotics Introduction.  Robotics is the science of perceiving and manipulating the physical world through computer-controlled devices.
VEHICLE INTELLIGENCE LAB
Probabilistic Robotics
State Estimation and Kalman Filtering Zeeshan Ali Sayyed.
Tracking with dynamics
CS 547: Sensing and Planning in Robotics Gaurav S. Sukhatme Computer Science Robotic Embedded Systems Laboratory University of Southern California
Probabilistic Robotics Introduction Probabilities Bayes rule Bayes filters.
Observation vs. Inferences The Local Environment.
Probabilistic Robotics Introduction. SA-1 2 Introduction  Robotics is the science of perceiving and manipulating the physical world through computer-controlled.
Planning Strategies RSS II Lecture 6 September 21, 2005.
Probabilistic Robotics Probability Theory Basics Error Propagation Slides from Autonomous Robots (Siegwart and Nourbaksh), Chapter 5 Probabilistic Robotics.
Instructor: Eyal Amir Grad TAs: Wen Pu, Yonatan Bisk Undergrad TAs: Sam Johnson, Nikhil Johri CS 440 / ECE 448 Introduction to Artificial Intelligence.
Autonomous Mobile Robots Autonomous Systems Lab Zürich Probabilistic Map Based Localization "Position" Global Map PerceptionMotion Control Cognition Real.
Matching ® ® ® Global Map Local Map … … … obstacle Where am I on the global map?                                   
CS b659: Intelligent Robotics
Probabilistic Robotics
Markov ó Kalman Filter Localization
State Estimation Probability, Bayes Filtering
CSE-490DF Robotics Capstone
Introduction to Robot Mapping
A Short Introduction to the Bayes Filter and Related Models
Probabilistic Map Based Localization
CS 416 Artificial Intelligence
Presentation transcript:

Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 5.1: State Estimation Jürgen Sturm Technische Universität München

World State (or System State)  World State (real state of the real world) Jürgen Sturm Autonomous Navigation for Flying Robots 2  Belief State (our belief/estimate of the world state)

State Estimation What parts of the world state are (most) relevant for a flying robot?  Position  Velocity  Obstacles  Map  Positions and intentions of other robots/humans …… Jürgen Sturm Autonomous Navigation for Flying Robots 3

State Estimation  Cannot observe world state directly  Need to estimate the world state, but how?  Infer world state from sensor observations  Infer world state from executed motions/actions Jürgen Sturm Autonomous Navigation for Flying Robots 4

Sensor Model  Robot perceives the environment through its sensors  Goal: Infer the state of the world from sensor readings Jürgen Sturm Autonomous Navigation for Flying Robots 5 world statesensor reading sensor model (observation function)

Motion Model  Robot executes an action (or control) (e.g., move forward at 1m/s)  Update belief state according to motion model Jürgen Sturm Autonomous Navigation for Flying Robots 6 current state previous state motion model executed action

Probabilistic Robotics  Sensor observations are noisy, partial, potentially missing  All models are partially wrong and incomplete  Usually we have prior knowledge Jürgen Sturm Autonomous Navigation for Flying Robots 7

Probabilistic Robotics  Probabilistic sensor models  Probabilistic motion models  Fuse data between multiple sensors (multi-modal)  Fuse data over time (filtering) Jürgen Sturm Autonomous Navigation for Flying Robots 8

Lessons Learned  World state vs. (internal) belief state  Sensor and motion models  Model uncertainty using probability theory  Next: Recap on Probability Theory Jürgen Sturm Autonomous Navigation for Flying Robots 9