Level Densities and Gamma Strength Functions from the Fine Structure of Giant Resonances S-DALINAC TU DARMSTADT Spin- and parity-resolved level densities.

Slides:



Advertisements
Similar presentations
3/21/2011| Institut für Kernphysik, TU-Darmstadt, A. Scheikh Obeid| Motivation Experiment 92 Zr Analysis and results Summary and outlook supported by DFG.
Advertisements

| Institut für Kernphysik | Project A2 | Abdulrahman Scheikh Obeid | 1 Nature of Symmetric and Mixed Symmetric 2 + States in 92 Zr from Electron.
Oslo Seminar, Oslo, 6 December, ) M. Guttormsen et al., NIM A374 (1996) 371 2) M. Guttormsen et al., NIM A255 (1987) 518 3) A. Schiller et al.,
RIKEN Seminar, September 8th, Complete Electric Dipole Response and Neutron Skin in 208 Pb A. Tamii Research Center for Nuclear Physics, Osaka University.
HIGS2 Workshop June 3-4, 2013 Nuclear Structure Studies at HI  S Henry R. Weller The HI  S Nuclear Physics Program.
Photo-Nuclear Physics Experiments by using an Intense Photon Beam Toshiyuki Shizuma Gamma-ray Nondestructive Detection Research Group Japan Atomic Energy.
Valence shell excitations in even-even spherical nuclei within microscopic model Ch. Stoyanov Institute for Nuclear Research and Nuclear Energy Sofia,
University of Liverpool
Dipole Strengths in 112,120 Sn and Systematics of the Pygmy Dipole Resonance at Z=50 Shell Closure BANU ÖZEL 1,2, J. ENDERS 1, Y. KALMYKOV 1, P. von NEUMANN-COSEL.
Soft Electric Dipole Modes in Heavy Nuclei: Some Selected Examples S-DALINAC TU DARMSTADT Soft E1 modes: the case of 208 Pb * Supported by DFG under contracts.
12 June, 2006Istanbul, part I1 Mean Field Methods for Nuclear Structure Part 1: Ground State Properties: Hartree-Fock and Hartree-Fock- Bogoliubov Approaches.
The Collective Model Aard Keimpema.
The 7th CNS-EFES Summer School: CNS-EFES08 August 26 – September 01, 2008, Center for Nuclear Study (CNS) Wako Campus / Koshiba Hall, Hongo Campus, University.
Higher Order Multipole Transition Effects in the Coulomb Dissociation Reactions of Halo Nuclei Dr. Rajesh Kharab Department of Physics, Kurukshetra University,
Open Problems in Nuclear Level Densities Alberto Ventura ENEA and INFN, Bologna, Italy INFN, Pisa, February 24-26, 2005.
NUCLEAR STRUCTURE PHENOMENOLOGICAL MODELS
1 TCP06 Parksville 8/5/06 Electron capture branching ratios for the nuclear matrix elements in double-beta decay using TITAN ◆ Nuclear matrix elements.
Oslo, May 21-24, Systematics of Level Density Parameters Till von Egidy, Hans-Friedrich Wirth Physik Department, Technische Universität München,
Weak Interactions and Supernova Collapse Dynamics Karlheinz Langanke GSI Helmholtzzentrum Darmstadt Technische Universität Darmstadt Erice, September 21,
Heat Capacities of 56 Fe and 57 Fe Emel Algin Eskisehir Osmangazi University Workshop on Level Density and Gamma Strength in Continuum May 21-24, 2007.
On some spectral properties of billiards and nuclei – similarities and differences* SFB 634 – C4: Quantum Chaos ● Generic and non-generic features of.
Statistical properties of nuclei: beyond the mean field Yoram Alhassid (Yale University) Introduction Beyond the mean field: correlations via fluctuations.
Structure of Warm Nuclei Sven Åberg, Lund University, Sweden Fysikersamfundet - Kärnfysiksektionen Svenskt Kärnfysikmöte XXVIII, november 2008, KTH-AlbaNova.
Spin-isospin studies with the SHARAQ Spectrometer Tomohiro Uesaka & Y. Sasamoto, K. Miki, S. Noji University of Tokyo for the SHARAQ collaboration Aizu2010.
XII Nuclear Physics Workshop Maria and Pierre Curie: Nuclear Structure Physics and Low-Energy Reactions, Sept , Kazimierz Dolny, Poland Self-Consistent.
1 New formulation of the Interacting Boson Model and the structure of exotic nuclei 10 th International Spring Seminar on Nuclear Physics Vietri sul Mare,
Investigation of Parity Quantum Numbers with Laser Compton Back-Scattered Photons ELI-NP: The Way Ahead – March, 2011 C. Romig, J. Beller, J. Isaak,
Gamma-ray strength functions obtained with the Oslo method Ann-Cecilie Larsen July 8, 2008 Workshop on Statistical Nuclear Physics and Applications in.
Neutrino-nucleus interaction and its role in supernova dynamics and nucleosynthesis Karlheinz Langanke GSI Helmholtzzentrum Darmstadt Technische Universität.
Giant Resonances - Some Challenges from Recent Experiments
Low-lying dipole strength in unstable nuclei. References: N. Ryezayeva et al., Phys. Rev. Lett. 89 (2002) P. Adrich, A. Kimkiewicz et al., Phys.Rev.
Isospin mixing and parity- violating electron scattering O. Moreno, P. Sarriguren, E. Moya de Guerra and J. M. Udías (IEM-CSIC Madrid and UCM Madrid) T.
Coupling of (deformed) core and weakly bound neutron M. Kimura (Hokkaido Univ.)
Dott. Antonio Botrugno Ph.D. course UNIVERSITY OF LECCE (ITALY) DEPARTMENT OF PHYSICS.
GT (  ) : Important weak process  decay : absolute B(GT), limited to low-lying state CE reactions : relative B(GT), highly Ex region  decay  isospin.
Neutron enrichment of the neck-originated intermediate mass fragments in predictions of the QMD model I. Skwira-Chalot, T. Cap, K. Siwek-Wilczyńska, J.
Low-lying states in 11 B Center for Nuclear Study, University of Tokyo KAWABATA Takahiro RCNP, Osaka UniversityH. Fujimura, M. Fujiwara, K. Hara, K. Hatanaka,
Hadron Spectroscopy with high momentum beam line at J-PARC K. Ozawa (KEK) Contents Charmed baryon spectroscopy New experiment at J-PARC.
RNB Cortina d’Ampezzo, July 3th – 7th 2006 Elisa Rapisarda Università degli studi di Catania E.Rapisarda for the Diproton collaboration 18 *
AGATA Physics Workshop Istanbul, Turkey May 4-7, 2010 G. Duchêne Deformation in N=40 nuclei G. Duchêne, R. Lozeva, C. Beck, D. Curien, F. Didierjean, Ch.
Nuclear Structure SnSn P,n p n (  )‏ ( ,Xn)‏ M1E1 p,nn X λ ?E1 ExEx  Study of the pygmy dipole resonance as a function of deformation.
Lecture 23: Applications of the Shell Model 27/11/ Generic pattern of single particle states solved in a Woods-Saxon (rounded square well)
NS08 MSU, June 3rd – 6th 2008 Elisa Rapisarda Università degli studi di Catania E.Rapisarda 18 2.
What can we learn from nuclear level density? Magne Guttormsen Department of Physics and SAFE University of Oslo.
July 29-30, 2010, Dresden 1 Forbidden Beta Transitions in Neutrinoless Double Beta Decay Kazuo Muto Department of Physics, Tokyo Institute of Technology.
Fine structure of giant resonances in Calcium isotopes
Variational approach to isospin symmetry breaking in medium mass nuclei A. PETROVICI Institute for Physics and Nuclear Engineering, Bucharest, Romania.
MICROSCOPIC CALCULATION OF SYMMETRY PROJECTED NUCLEAR LEVEL DENSITIES Kris Van Houcke Ghent University In collaboration with S. Rombouts, K. Heyde, Y.
Beginning of 0˚ mode for K600 at iTL
Symmetries of the Cranked Mean Field S. Frauendorf Department of Physics University of Notre Dame USA IKH, Forschungszentrum Rossendorf, Dresden Germany.
China-Japan Symposium at Shanghai, May 16-20, Spin-flip excitations studied by high-resolution (p,p’) scattering experiment at foward angles A.
 Standard Model goes pear-shaped in CERN experiment The Register  Physicists get a good look at pear-shaped atomic nuclei The Los Angeles Times  Exotic.
SFB 634 *Supported by the DFG within SFB 634 and 446 JAP 113/267/0-2 Complete Dipole Strength Distributions from High-Resolution Polarized Proton Scattering.
Takashi Hashimoto Institute for Basic Science, Korea Collaborators A. M. Krumbholz 1, A. Tamii 2, P. von Neumann-Cosel 1, N. Aoi 2, O. Burda 2, J. Carter.
Congresso del Dipartimento di Fisica Highlights in Physics –14 October 2005, Dipartimento di Fisica, Università di Milano Contribution to nuclear.
INPC2013,June 2-7, 2013, Firenze 1 Neutron Skin Thickness of 208Pb and Constraints on Symmetry Energy Atsushi Tamii Research Center for Nuclear Physics.
Nordita Workshop on chiral bands /04/2015 Multiple chiral bands associated with the same strongly asymmetric many- particle nucleon configuration.
Lecture 4 1.The role of orientation angles of the colliding nuclei relative to the beam energy in fusion-fission and quasifission reactions. 2.The effect.
Nature of Mixed-Symmetry 2 + States in 94 Mo from High-Resolution Electron and Proton Scattering and Line Shape of the First Excited 1/2 + State in 9 Be.
超重原子核的结构 孙 扬 上海交通大学 合作者:清华大学 龙桂鲁, F. Al-Khudair 中国原子能研究院 陈永寿,高早春 济南,山东大学, 2008 年 9 月 20 日.
Electric Dipole Response, Neutron Skin, and Symmetry Energy
1 Electric Dipole Response, Neutron Skin, and Symmetry Energy (II) Atsushi Tamii Research Center for Nuclear Physics (RCNP) Osaka University, Japan CNS.
Shape parameterization
COLLABORATORS: S.J. Freeman, B.P. Kay,
Large-scale shell-model study of E1 strength function and level density Yutaka Utsuno Advanced Science Research Center, Japan Atomic Energy Agency Center.
The monopole transition to the Hoyle state in 12C in electron scattering: Is there an a-condensate? * Maksym Chernykh Institut für Kernphysik, TU Darmstadt.
Emmanuel Clément IN2P3/GANIL – Caen France
Isospin Symmetry test on the semimagic 44Cr
Role of Pions in Nuclei and Experimental Characteristics
Nuclear excitations in relativistic nuclear models
Presentation transcript:

Level Densities and Gamma Strength Functions from the Fine Structure of Giant Resonances S-DALINAC TU DARMSTADT Spin- and parity-resolved level densities * Supported by DFG under contracts SFB 634, 446-JAP-113/0/2, and NE 679/2-2 Polarized proton scattering as tool to extract complete E1/M1 strength functions Peter von Neumann-Cosel Institut für Kernphysik, Technische Universität Darmstadt

Monte-Carlo Shell Model Predictions * Y. Alhassid, G.F. Bertsch, S. Liu, and H. Nakada, Phys. Rev. Lett. 84 (2000) 4313 Total level density (not spin projected) shows strong parity dependence S.J. Lokitz, G.E.Mitchell, and J.F. Shriner, Jr., Phys. Rev. C71 (2005) Questioned by recent experiments ( 45 Sc)

Requirements and Techniques Selectivity - hadron scattering at extremely forward angles and intermediate energies - electron scattering at 180° and low momentum transfers High resolution - lateral and angular dispersion matching - faint beam method Discrete wavelet transform - background Fluctuation analysis - level density

Example: Spinflip Gamow-Teller Resonance in 90 Nb Selective excitation of 1 + states Y. Kalmykov et al., Phys. Rev. Lett. 96 (2006)

Fluctuations and Level Densities D /  D  Wigner I /  I  Porter-Thomas  <  D   <  D  <  E

Fluctuation Analysis Background Statistics, local features Local fluctuations Autocorrelation function

Autocorrelation Function and Mean Level Spacing variance level spacing  D   resolution  PT  W selectivity autocorrelation function S. Müller, F. Beck, D. Meuer, and A. Richter, Phys. Lett. 113B (1982) 362 P.G. Hansen, B. Jonson, and A. Richter, Nucl. Phys. A518 (1990) 13

Wavelets and Wavelet Transform finite support (square integrable) wavelet coefficients wavelet

Discrete Wavelet Transform (DWT) wavelet coefficients DWT:  E = 2 j and E x = k·  E with j, k = 1,2,3, … exact reconstruction vanishing moments this defines the shape and magnitude of the background

Decomposition of Spectra  (E) = A1 + D1 Background  (E) = A2 + D2 + D1

Application to the 90 Zr( 3 He,t) 90 Nb spectrum

Fluctuation analysis Background Statistics, local features Local fluctuations Autocorrelation function from wavelet analysis

Level Density Models Back-shifted Fermi gas model - semiempirical approach, shell and pairing effects - no distinction of parity **** T. Rauscher, F.-K. Thielemann, and K.-L. Kratz, Phys. Rev. C56 (1997) 1613 **** T. von Egidy and D. Bucurescu, Phys. Rev. C72 (2005) ; Phys. Rev. C73 (2006) (E) P. Demetriou and S. Goriely, Nucl. Phys. A695 (2001) 95 P. Leboeuf and J. Roccia, Phys. Rev. Lett. 97 (2006) HF-BCS - microscopic statistical model, MSk7 force, shell effects, pairing correlations, deformation effects, collective excitations - no distinction of parity Many-body density of states (MBDOS) - two-component Fermi gas, shell effects, deformations, periodic orbits - no distinction of parity

Level Density Models HFB - microscopic combinatorial model, MSk13 force, shell effects, pairing correlations, deformation effects, collective excitations - parity distinction - fluctuations with energy Monte-Carlo shell model - microscopic model, large model space, pairing+quadrupole force - parity distinction C. Özen, K. Langanke, G. Martinez-Pinedo, and D.J. Dean, nucl-th/ (2007) S. Hilaire and S. Goriely, Nucl. Phys. A779 (2006) 63 Large-scale prediction of the parity distribution in the level density - macroscopic-microscopic approach, deformed Wood-Saxon potential, BCS occupation numbers, back-shifted Fermi Gas model - parity distinction D. Mocelj et al., Phys. Rev. C75 (2007)

Results and Model Predictions: 90 Nb, J  = 1 + Y. Kalmykov et al., Phys. Rev. Lett. 96 (2006)

Fine Structure of the ISGQR Selective excitation of 2 + states A. Shevchenko et al., Phys. Rev. Lett. 93 (2004)

Fine Structure of the M2 Resonance Selective excitation of 2 - states P. von Neumann-Cosel et al., Phys. Rev. Lett. 82 (1999) 1105

Level density of 2 + and 2 - states: 90 Zr

Level density of 2 + and 2 - states: 58 Ni

Test of Parity Dependence Y. Kalmykov, C. Özen, K. Langanke, G. Martinez-Pinedo, P. von Neumann-Cosel, and A. Richter, Phys. Rev. Lett. 99 (2007)

Equilibration of Parity-Projected Level Densities Experiment: no parity dependence for E x > 8 MeV Core breaking - e.g. near shell closure 58 Ni  sd-pf transitions are important   - would be enlarged Two energy scales which determine  - /  + - pair-breaking  5 – 6 MeV for intermediate mass nuclei - shell gap between opposite-parity states near the Fermi level  depends strongly on the shell structure, e.g. 68 Zn  pf-g9/2 is small Models: 90 Zr ρ - ≈ ρ + at E x ≈ 5 – 10 MeV but 58 Ni ρ - ≈ ρ + at E x ≈ 20 MeV

Summary and Outlook: Level Densities Largely model-independent extraction from the spectra with the aid of a fluctuation analysis combined with a discrete wavelet analysis Indication for fine structure of level densities at high excitation energies Fine structure of giant resonances contains information on level densities of a given spin and parity Further applications to GTR, IVGDR, ISGQR, M1, M2, … resonances in a wide range of nuclei No experimental parity dependence for J = 2 states in 58 Ni and 90 Zr in contrast (for 58 Ni) to current microscopic model calculations

Soft Dipole Modes and the Gamma Strength Function Modeling requires knowledge of the salient features of these modes and an understanding of the underlying structure Gamma strength function at low excitation energies is determined by soft dipole modes: PDR, M1 scissors mode, spin-M1 resonance … PDR: current topic of research, many open questions For the scissors mode this has been achieved in the last 25 years J. Enders, P. von Neumann-Cosel, C. Rangacharyulu, and A. Richter, Phys. Rev. C 71 (2005) K. Heyde, P. von Neumann-Cosel, and A. Richter, Rev. Mod. Phys., in preparation Spin M1-resonance: few data in heavy nuclei, quenching? New experimental approach: intermediate-energy polarized proton scattering

Reminder: The Pygmy Dipole Resonance in 208 Pb N. Ryezayeva et al., Phys. Rev. Lett. 89 (2002)

E1 Response in 208 Pb Excellent agreement of QPM with experiment ?

Transition Densities

ToroidalGDR E x > 10.5 MeVE x = 6.5 – 10.5 MeV Velocity Distributions

Spinflip M1 Resonance in 208 Pb R.M. Laszewski et al., Phys. Rev. Lett. 61 (1988) 1710 ? Quenching ?

Low-Energy Dipole Modes How can we elucidate the properties and structure of these low- energy dipole modes?  polarized proton scattering at 0 o intermediate energy (300 MeV optimal) high resolution angular distribution  E1 / M1 separation polarization observables  spinflip / non-spinflip separation

0 o Setup at RCNP

Background-Subtracted Spectrum ΔE = 25 keV (FWHM)

Spectrum (Expanded)

Angular Distributions Coulomb excitation dominant

B(E1) Strength

Status and Outlook Intermediate-energy polarized proton scattering under 0 o as a tool to study E1 and spin-M1 strength distributions High-resolution study of 208 Pb as a reference case E1/M1 decomposition under way Complete measurement of spin-flip observables

Collaborations Proton scattering TU Darmstadt / RCNP Osaka / U Osaka / iThemba LABS / U Witwatersrand T. Adachi, J. Carter, H. Fujita, Y. Fujita, K. Hatanaka, Y. Kalmykov, M. Kato, H. Matsubara, P. von Neumann-Cosel, H. Okamura, I. Poltoratska, V.Yu. Ponomarev, A. Richter, B. Rubio, H. Sakaguchi, Y. Sakemi, Y. Sasamoto, Y. Shimizu, F.D. Smit, Y. Tameshige, A. Tamii, J. Wambach, M. Yosoi, J. Zenihiro Level Densities TU Darmstadt / GSI Y. Kalmykov, C. Özen, K. Langanke, G. Martínez-Pinedo, P. von Neumann-Cosel, A. Richter

Measured Spectrum

Signatures of Different E1 Modes in (p,p´) Angular Distribution Pronounced differences at small angles due to Coulomb-nuclear interference

Signatures of Different E1 Modes in (p,p´) Asymmetry Signature of toroidal mode in the asymmetry at small angles ?

Signatures of Low – Energy E1 modes in (e,e´) Large difference in the momentum transfer dependence

Fine Structure of Level Density: 90 Nb, J  = 1 +

Fine structure of Level Density: 58 Ni, J  = 2 +

Angular Distribution: 90 Zr( 3 He,t) 90 Nb Constant level density as a constraint in the analysis

Ingredients of HFB Nuclear structure: HFB calculation with a conventional Skyrme force single particle energies pairing strength for each level quadrupole deformation parameter deformation energy Collective effects rotational enhancement vibrational enhancement disappearance of deformation at high energies

Ingredients of SMMC Partition function of many-body states with good J  Expectation values at inverse temperature  = 1/kT Level density from inverse Laplace transform in the saddle-point approximation

Results and Model Predictions: 58 Ni, J  = 2 +

Wavelet analysis

Polarized Proton Scattering Experiment at RCNP HIPIS AVF Ring Cyclotron