Structures of Hydrated Alkali Metal Cations, using Infrared Photodissociation Spectroscopy Haochen Ke, Christian van der Linde, James M. Lisy Department.

Slides:



Advertisements
Similar presentations
Infrared spectroscopy of metal ion-water complexes
Advertisements

Understanding Complex Spectral Signatures of Embedded Excess Protons in Molecular Scaffolds Andrew F. DeBlase Advisor: Mark A. Johnson 68 th Internatinal.
INFRARED SPECTROSCOPY OF SIZE-SELECTED NEUTRAL AND CATIONIC AMMONIA CLUSTERS COMBINED WITH VACUUM-ULTRAVIOLET- PHOTOIONIZATION MASS SPECTROMETRY Masaki.
Silver Nyambo Department of Chemistry, Marquette University, Wisconsin Resonance enhanced two-photon ionization (R2PI) spectroscopy of halo-aromatic clusters.
Hydrogen Bonding in Methanated Li + (H 2 O) 2-4 Clusters Oscar Rodriguez Jr. and James M. Lisy University of Illinois at Urbana-Champaign.
Helium Nanodroplet Isolation Spectroscopy of NO 2 and van der Waals Complexes Robert Fehnel Kevin Lehmann Department of Chemistry University of Virginia.
Ryunosuke Shishido, Asuka Fujii Department of Chemistry, Graduate School of Science, Tohoku University, Japan Jer-Lai Kuo Institute of Atomic and Molecular.
1 UV PHOTOFRAGMENTATION SPECTROSCOPY OF MODEL LIGNIN-ALKALI ION COMPLEXES: EXTENDING LIGNOMICS INTO THE SPECTROSCOPIC REGIME JACOB C. DEAN, NICOLE L. BURKE,
Infrared Spectroscopy of Doubly-Charged Metal-Water Complexes
Infrared spectroscopy of Li(methylamine) n (NH 3 ) m clusters Nitika Bhalla, Luigi Varriale, Nicola Tonge and Andrew Ellis Department of Chemistry University.
Structure Determination of Silicon Clusters in the Gas Phase A Vibrational Spectroscopy and DFT Investigation Jonathan T. Lyon, Philipp Gruene, Gerard.
Motivation: CO 2 capture System: Metal-Organic Frameworks Data: Unusual blue shift of adsorbed CO 2 3 mode Room-temperature sidebands Low-temperature bands.
PULSED-FIELD IONIZATION ELECTRON SPECTROSCOPY OF Al-URACIL COMPLEX Sergiy Krasnokutski and Dong-Sheng Yang University of Kentucky, Lexington, KY 40506,
Anion Photoelectron Spectroscopic Studies of NbC 4 H 4 ‾, NbC 6 H 6 ‾ and NbC 6 H 4 ‾ Products of Flow Tube Reactions of Niobium with Butadiene Melissa.
Structures and Spin States of Transition-Metal Cation Complexes with Aromatic Ligands Free Electron Laser IRMPD Spectra Robert C. Dunbar Case Western Reserve.
Vibrational and Geometric Structures of La 3 C 2 O and La 3 C 2 O + from MATI Spectra and ab initio Calculations Mourad ROUDJANE, Lu WU, and Dong-Sheng.
Electronic spectroscopy of Li(NH 3 ) 4 Nitika Bhalla, Luigi Varriale, Nicola Tonge and Andrew Ellis Department of Chemistry University of Leicester UK.
Infrared Photodissociation Spectroscopy of Silicon Carbonyl Cations
Introduction Methods Conclusions Acknowledgement The geometries, energies, and harmonic vibrational frequencies of complexes studied were calculated using.
Pulsed Field Ionization-Zero Electron Kinetic Energy (PFI-ZEKE) Spectroscopy of Sc-C 6 H 5 X(X=F,CH 3,OH) Complexes Changhua Zhang, Serge A. Krasnokutskia.
Infrared Photodissociation Spectroscopy of Aluminum Benzene Cation Complexes Nicki Reishus, Biswajit Bandyopadhyay and Michael A. Duncan Department of.
Infrared Spectroscopic Investigation of Magic Number Hydrated Metal Ion Clusters Jordan Beck, Jim Lisy June 22,2009 OSU International Symposium on Molecular.
1 Ab initio and Infrared Studies of Carbon Dioxide Containing Complex Zheng Su and Yunjie Xu Department of Chemistry, University of Alberta, Edmonton,
Electronic Transitions of Palladium Monoboride and Platinum Monoboride Y.W. Ng, H.F. Pang, Y. S. Wong, Yue Qian, and A. S-C. Cheung Department of Chemistry.
Effects of Multiple Argon Tagging in Alkali Metal M + H 2 OAr n and M + D 2 OAr n studied by IRPD Spectroscopy Christian van der Linde, Haochen Ke, and.
Silver Nyambo Department of Chemistry, Marquette University, Wisconsin Reactive pathways in the chlorobenzene-ammonia dimer cation radical: New insights.
Ling Jiang Department of Molecular Physics Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6, Berlin, Germany 65th International Symposium.
Department of Chemistry, University of Georgia, Athens, GA National Science Foundation Infrared.
Theoretical Investigation of the M + –RG 2 (M = Alkaline Earth Metal; RG = Rare Gas) Complexes Adrian M. Gardner, Richard J. Plowright, Jack Graneek, Timothy.
Rotationally-Resolved Spectroscopy of the Bending Modes of Deuterated Water Dimer JACOB T. STEWART AND BENJAMIN J. MCCALL DEPARTMENT OF CHEMISTRY, UNIVERSITY.
Multiple Photon Absorption in Hydrated Cesium Ion Clusters Jordan Beck, Jim Lisy June 17,2008 OSU International Symposium on Molecular Spectroscopy.
Infrared Spectroscopy & Structures of Mass-Selected Rhodium Carbonyl & Rhodium Dinitrogen Cations Heather L. Abbott, 1 Antonio D. Brathwaite 2 and Michael.
Infrared Photodissociation Spectroscopy of TM + (N 2 ) n (TM=V,Nb) Clusters E. D. Pillai, T. D. Jaeger, M. A. Duncan Department of Chemistry, University.
Spectroscopy of Multiply Charged Metal Ions: IR Study of Mn 2+ (18-crown-6 ether)(MeOH) 1-3 Jason D. Rodriguez and James M. Lisy Department of Chemistry,
P. D. CARNEGIE, B. BANDYOPADHYAY AND M. A. DUNCAN
The University of Illinois-Urbana Champaign
IR spectra of Methanol Clusters (CH3OH)n Studied by IR Depletion and VUV Ionization Technique with TOF Mass Spectrometer Department of Applied Chemistry.
Proton Sponges: A Rigid Organic Scaffold to Reveal the Quantum Structure of the Intramolecular Proton Bond Andrew F. DeBlase, Michael T. Scerba, Thomas.
Chemistry XXI Unit 2 How do we determine structure? The central goal of this unit is to help you develop ways of thinking that can be used to predict the.
ANION PHOTOELECTRON SPECTROSCOPIC STUDIES OF NbCr(CO) n ‾ (n = 2,3) HETEROBIMETALLIC CARBONYL COMPLEXES Melissa A. Baudhuin, Praveenkumar Boopalachandran,
1Department of Chemistry, Wayne State University, Detroit, MI, 48202
Infrared Resonance Enhanced Photodissociation (IR- REPD) Spectroscopy used to determine solvation and structure of Ni + (C 6 H 6 ) n and Ni + (C 6 H 6.
Observation of Isomer Trapping in Li + (H 2 O) 4 Ar Cluster Ions Dorothy J. Miller and James M. Lisy Department of Chemistry University of Illinois at.
PFI-ZEKE Spectroscopy of Aluminum-Imidazole and -Pyrimidine Complexes JUNG SUP LEE, XU WANG, SERGIY KRASNOKUTSKI, and DONG-SHENG YANG University of Kentucky.
Infrared Photodissociation Spectroscopy of Aluminum Benzene Cation Complexes Nicki Reishus, Biswajit Bandyopadhyay and Michael A. Duncan Department of.
Neal Kline, Meng Huang, and Terry A. Miller Department of Chemistry and Biochemistry The Ohio State University.
Infrared Resonance Enhanced Photodissociation of Au + (CO) n Complexes in the Gas Phase Joe Velasquez, III, E. Dinesh Pillai and Michael A. Duncan Department.
Mohammed Gharaibeh, Fumie X. Sunahori, and Dennis J. Clouthier Department of Chemistry, University of Kentucky Riccardo Tarroni Dipartimento di Chimica.
Hydrogen-bond between the oppositely charged hydrogen atoms It was suggested by crystal structure analysis. A small number of spectroscopic studies have.
Main Title Manori Perera 1 and Ricardo Metz University of Massachusetts Amherst 64 th International Symposium on Molecular Spectroscopy June 25th, 2009.
Intermolecular Interactions between Formaldehyde and Dimethyl Ether and between Formaldehyde and Dimethyl Sulfide in the Complex, Investigated by Fourier.
Gas Phase Infrared Spectroscopy of Protonated Species Department of Chemistry University of Georgia Athens Georgia,
Itaru KURUSU, Reona YAGI, Yasutoshi KASAHARA, Haruki ISHIKAWA Department of Chemistry, School of Science, Kitasato University ULTRAVIOLET AND INFRARED.
Adam J. Fleisher Philip J. Morgan David W. Pratt Department of Chemistry University of Pittsburgh Non-symmetric push-pull molecules in the gas phase: High.
Magic Numbers in Large Hydrated Alkali Metal Clusters: K + and Cs + Matthew L. Ackerman, Jason D. Rodriguez, Dorothy J. Miller, and James M. Lisy University.
Velocity Map Imaging Study of a Mass-Selected Ion Beam: the Photoinitiated Charge-Transfer Dissociation of and Ag + (C 6 H 6 ) Jonathon A. Maner, Daniel.
INVESTIGATION OF VAN DER WAALS COMPLEXES IN A FREE EXPANSION OF C 2 H 2 /X (X=RARE GAS) (X=Rg) USING CW CAVITY RING-DOWN SPECTROSCOPY IN THE OVERTONE RANGE.
CONFORMATION-SPECIFIC ELECTRONIC AND VIBRATIONAL SPECTROSCOPY OF DIBENZO-15-CROWN-5 ETHER IN A SUPERSONIC JET. Evan Buchanan, Chirantha P. Rodrigo, William.
Initial Development of High Precision, High Resolution Ion Beam Spectrometer in the Near- Infrared Michael Porambo, Brian Siller, Andrew Mills, Manori.
Temperature Dependence of Rb + (H 2 O) n and Rb + (H 2 O) n Ar (n=3-5) Cluster Ions Amy L. Nicely OSU International Symposium on Molecular Spectroscopy.
Spectroscopy of (He) N -Molecule Clusters: Tracing the Onset of Superfluidity Yunjie Xu and Wolfgang Jäger Department of Chemistry, University of Alberta,
Near-Infrared Spectroscopy of Small Protonated Water Clusters
Haochen Ke, Amy Nicely, James Lisy
Temperature Effects in Hydrated Alkali Metal Ions
Amy L. Nicely and James M. Lisy
E. D. Pillai, J. Velasquez, P.D. Carnegie, M. A. Duncan
Fourier transform microwave spectra of n-butanol and isobutanol
Allen M. Ricks and Michael A. Duncan Department of Chemistry
Anil K. Kandalam* Department of Physics
Stepwise Internal Energy Control for Protonated Methanol Clusters
Presentation transcript:

Structures of Hydrated Alkali Metal Cations, using Infrared Photodissociation Spectroscopy Haochen Ke, Christian van der Linde, James M. Lisy Department of Chemistry, UIUC ISMS-RG 06

Alkali metals (Li, Na, K, Rb and Cs) are important chemical and biochemical elements. –Na and K are essential elements –Balance of electrolyte and osmotic pressure [1] –Electroneurographic signal transmission [1] –Li and Rb are used in treatment of bipolar disorder and depression [2,3] Introduction 2 [1] Berg, J. M., Tymoczko, J. L., Stryer, L. Biochemistry, Seventh Edition; W. H. Freeman, [2] Baldessarini, R. J., Tondo, L., Davis, P., Pompili, M., Goodwin, F. K., Hennen, J. Bipolar Disord. 2006, 8 (2), 625–639. [3] Torta, R., Ala, G.; Borio, R., Cicolin, A., Costamagna, S., Fiori, L., Ravizza, L. Minerva Psichiatr. 1993, 34 (2), 101–110.

M + (H 2 O) n, (M = Li, Na, K, Rb and Cs) are the ubiquitous and basic form in biochemical systems. –Structures of (H 2 O) n [4] –Structures of H + (H 2 O) n [5] Introduction 3 [4] Bryantsev, V. A.; Diallo, M. S.; Van Duin, A. C. T.; Goddard III, W. A. J. Chem. Theory Comput., 2009, 5 (4), 1016–1026. [5] Jiang, J.; Wang, Y.; Chang, H.; Lin, S. H.; Lee, Y. T.; Niedner-Schatteburg, G.; Chang, H. J. Am. Chem. Soc. 2000, 122, [6] Hribar, B.; Southall, N. T.; Vlachy, V.; Dill, K. A. J. Am. Chem. Soc. 2002, 124, “The name ‘MB’ arises because there are three hydrogen- bonding arms, arranged as in the Mercedes Benz logo” [6]

Introduction M + (H 2 O) n, (M = Li, Na, K, Rb and Cs) are the ubiquitous and basic form in biochemical systems. –What are the structures of M + (H 2 O) n ? –Many calculations [7-9] –Limited experimental data [10,11] 4 …… [7] Glendening, E. D.; Feller, D. J. Phys. Chem. B. 1995, 99, 3060–3067. [8] Park, J.; Kołaski, M.; Lee, H. M.; Kim, K. S. J. Chem. Phys. 2004, 121, 3108–3116. [9] Kołaski, M.; Lee, H. M.; Choi, Y. C.; Kim, K. S.; Tarakeshwar, P.; Miller, D. J.; Lisy, J. M. J. Chem. Phys. 2007, 126, [10] Miller, D. J., Lisy, J. M. J. Am. Chem. Soc. 2008, 130 (46), 15393– [11] Miller, D. J., Lisy, J. M. J. Am. Chem. Soc. 2008, 130 (46), 15381–15392.

Research Methods—Experiment Q2 Detection Chamber Differential Chamber 10 Hz Nd 3+ :YAG (1064 nm) ~500 mJ/pulse Tunable LaserVision OPO/A 1.35~10 µm ~ 5mJ/pulse Triple Quadrupole Mass Spectrometer Tunable Infrared Laser Source Chamber InfraRed PhotoDissociation Spectroscopy (IRPD) hνhν Negligible multiple-photon absorption [12,13] Q1 Q3 5 [12] Ke, H., van der Linde, C., Lisy, J. M. J. Phys. Chem. A. 2014, 118 (8), 1363–1373. [13] Beck, J. P.; Lisy, J. M. J. Chem. Phys. 2011, 135,

Research Methods—Calculation Ab initio calculations –Stable structures and energies –MP2 level –O, H, Ar, Li + and Na +, aug-cc-pVDZ –K +, Rb + and Cs +, Los Alamos double-ζ basis sets (LANL2DZ) –No Basis Set Superposition Error (BSSE) correction Rice-Ramsperger-Kassel-Marcus Evaporative-Ensemble (RRKM-EE) calculations –Unimolecular dissociation rate –Effective cluster temperature (50~150K [12] ) –Kinetic shift effect (negligible for M + (H 2 O) n in this apparatus [13] ) 6 [12] Ke, H., van der Linde, C., Lisy, J. M. J. Phys. Chem. A. 2014, 118 (8), 1363–1373.

53.5 kJ/mol 5.5 kJ/mol Energy Threshold (38.3) (39.5) (40.7) (41.9) (43.1) (44.3) (45.5)Equivalent Photon Energy (kJ/mol) Spectral and Energy Analysis Na + (H 2 O) 5 Ar Frequency (cm -1 ) 7 N5f 17.0 kJ/mol N5c 11.7 kJ/mol N5b 11.8 kJ/mol N5a 4.7 kJ/mol <53.5 kJ/mol suppressed >53.5 kJ/mol survived

Structures of M + (H 2 O) 3 Ar

Structures of M + (H 2 O) 4 Ar C4 9

Structures of M + (H 2 O) 5 Ar C4 5+0 C ?

Summary M + (H 2 O) 3 Ar M + (H 2 O) 4 Ar Li, NaCs K, Rb C4 Li, Na, K, Rb Cs 11

M + (H 2 O) 5 Ar 12 Summary Li, Na 5+0 C4 Rb, Cs 4+1 Li, Na, K, Rb, Cs 5+0 C5 Cs 3+2 ? Li

Future Work Quantitative characterization, charge density vs structure Estimate H 2 O binding energy –M + (H 2 O) n → M + (H 2 O) n-1 + H 2 O [12] Biochemical molecules, i.e. 2-amino-1-phenyl ethanol and ephedrine/pseudoephedrine M + (H 2 O) 1 Ar n rotational structures –Christian van der Linde’s presentation –RJ11, Room 274, Medical Sciences Building, 04:25 PM 13 [12] Ke, H.; van der Linde, C.; Lisy, J. M. J. Phys. Chem. A. 2014, 118 (8), 1363–1373.

Acknowledgement Colleagues –Prof. James M. Lisy and Dr. Christian van der Linde –Prof. Benjamin McCall’s Group National Science Foundation CHE

[1] Berg, J. M.; Tymoczko, J. L.; Stryer, L. Biochemistry, Seventh Edition; W. H. Freeman, [2] Baldessarini, R. J.; Tondo, L.; Davis, P.; Pompili, M.; Goodwin, F. K.; Hennen, J. Bipolar Disord. 2006, 8 (5p2), 625–639. [3] Torta, R.; Ala, G.; Borio, R.; Cicolin, A.; Costamagna, S.; Fiori, L.; Ravizza, L. Minerva Psichiatr. 1993, 34 (2), 101–110. [4] Bryantsev, V. A.; Diallo, M. S.; Van Duin, A. C. T.; Goddard III, W. A. J. Chem. Theory Comput., 2009, 5 (4), 1016–1026. [5] Jiang, J.; Wang, Y.; Chang, H.; Lin, S. H.; Lee, Y. T.; Niedner-Schatteburg, G.; Chang, H. J. Am. Chem. Soc. 2000, 122, [6] Hribar, B.; Southall, N. T.; Vlachy, V.; Dill, K. A. J. Am. Chem. Soc. 2002, 124, [7] Glendening, E. D.; Feller, D. J. Phys. Chem. B. 1995, 99, 3060–3067. [8] Park, J.; Kołaski, M.; Lee, H. M.; Kim, K. S. J. Chem. Phys. 2004, 121, 3108–3116. [9] Kołaski, M.; Lee, H. M.; Choi, Y. C.; Kim, K. S.; Tarakeshwar, P.; Miller, D. J.; Lisy, J. M. J. Chem. Phys. 2007, 126, [10] Miller, D. J.; Lisy, J. M. J. Am. Chem. Soc. 2008, 130 (46), 15393– [11] Miller, D. J.; Lisy, J. M. J. Am. Chem. Soc. 2008, 130 (46), 15381– [12] Ke, H.; van der Linde, C.; Lisy, J. M. J. Phys. Chem. A. 2014, 118 (8), 1363–1373. [13] Beck, J. P.; Lisy, J. M. J. Chem. Phys. 2011, 135, Reference 15