CEA DSM Dapnia Egle TOMASI-GUSTAFSSONAugust 5, 2008 1 High order radiative corrections in Electron-Proton scattering Egle Tomasi-Gustafsson Saclay, France.

Slides:



Advertisements
Similar presentations
A Measurement of the Target Single-Spin Asymmetry in Quasi-Elastic 3 He (e, e) Joe Katich for E and the Hall A Collaboration Two-Photon Physics World.
Advertisements

1 The and -Z Exchange Corrections to Parity Violating Elastic Scattering 周海清 / 东南大学物理系 based on PRL99,262001(2007) in collaboration with C.W.Kao, S.N.Yang.
1 First Measurement of the Structure Function b 1 on Tensor Polarized Deuteron Target at HERMES A.Nagaitsev Joint Institute for Nuclear Research, Dubna.
The Electromagnetic Structure of Hadrons Elastic scattering of spinless electrons by (pointlike) nuclei (Rutherford scattering) A A ZZ  1/q 2.
Degree of polarization of  produced in quasielastic charge current neutrino-nucleus scattering Krzysztof M. Graczyk Jaroslaw Nowak Institute of Theoretical.
Jefferson Lab/Hampton U
DESY PRC May 10, Beyond the One Photon Approximation in Lepton Scattering: A Definitive Experiment at DESY for J. Arrington (Argonne) D. Hasell,
Marc Vanderhaeghen Johannes Gutenberg Universität, Mainz Olympus Coll. Meeting, DESY, February 23-24, 2010 TexPoint fonts used in EMF. Read the TexPoint.
Two-photon exchange: experimental tests Studying the QED expansion for elastic electron-proton scattering Motivation The Three Experiments Summary With.
Roberto Francisco Pérez Benito On behalf the HERMES Collaboration European Graduate School Lecture Week on Hadron Physics Jyväskylä, Aug 25-29, 2008 HERMES.
Richard MilnerDESY April 6, OLYMPUS Overview Motivation for the experiment Progress to date on the experiment The path forward.
CEA DSM Dapnia Egle Tomasi-Gustafsson Frascati, 20 Gennaio Model independent properties of two photon exchange Egle Tomasi-Gustafsson Saclay, France.
Andrei Afanasev, Trento workshop, 31 October 2012 Radiative Corrections for Elastic Scattering of Muons and Electrons on a Proton Andrei Afanasev The George.
LEPTON PAIR PRODUCTION AS A PROBE OF TWO PHOTON EFFECTS IN EXCLUSIVE PHOTON-HADRON SCATTERING Pervez Hoodbhoy Quaid-e-Azam University Islamabad.
9/19/20151 Semi-inclusive DIS: factorization Feng Yuan Lawrence Berkeley National Laboratory RBRC, Brookhaven National Laboratory.
THE DEEP INELASTIC SCATTERING ON THE POLARIZED NUCLEONS AT EIC E.S.Timoshin, S.I.Timoshin.
Crossed Channel Compton Scattering Michael Düren and George Serbanut, II. Phys. Institut, - some remarks on cross sections and background processes  
1 Topical Seminar on Frontier of Particle Physics 2004: QCD and Light Hadrons Lecture 1 Wei Zhu East China Normal University.
Introduction 2. 2.Limitations involved in West and Yennie approach 3. 3.West and Yennie approach and experimental data 4. 4.Approaches based on.
1 1.Introduction 2.Limitations involved in West and Yennie approach 3.West and Yennie approach and experimental data 4.Approaches based on impact parameter.
P Spring 2003 L9Richard Kass Inelastic ep Scattering and Quarks Elastic vs Inelastic electron-proton scattering: In the previous lecture we saw that.
Model dependent and model independent considerations on two photon exchange Model dependent and model independent considerations on two photon exchange.
Testing saturation with diffractive jet production in DIS Cyrille Marquet SPhT, Saclay Elastic and Diffractive Scattering 2005, Blois, France based on.
Unintegrated parton distributions and final states in DIS Anna Stasto Penn State University Work in collaboration with John Collins and Ted Rogers `
Duality: Recent and Future Results Ioana Niculescu James Madison University Hall C “Summer” Workshop.
Luan Cheng (Institute of Particle Physics, Huazhong Normal University) I.Introduction II. Potential Model with Flow III.Flow Effects on Parton Energy Loss.
Inelastic scattering When the scattering is not elastic (new particles are produced) the energy and direction of the scattered electron are independent.
CEA DSM Dapnia Egle Tomasi-Gustafsson Gomel, July 31, Polarization Observables and Hadron Structure (1) Egle Tomasi-Gustafsson Saclay, France.
Deeply Virtual Compton Scattering on the neutron Malek MAZOUZ LPSC Grenoble EINN 2005September 23 rd 2005.
1 QCD evolution equations at small x (A simple physical picture) Wei Zhu East China Normal University KITPC A simple physical picture.
Jim Stewart DESY Measurement of Quark Polarizations in Transversely and Longitudinally Polarized Nucleons at HERMES for the Hermes collaboration Introduction.
QCD-2004 Lesson 2 :Perturbative QCD II 1)Preliminaries: Basic quantities in field theory 2)Preliminaries: COLOUR 3) The QCD Lagrangian and Feynman rules.
The Stimulated Breit-Wheeler Process as a source of Background e + e - Pairs at the ILC Dr Anthony Hartin JAI, Oxford University Physics, Denys Wilkinson.
A Measurement of Two-Photon Exchange in Unpolarized Elastic Electron-Proton Scattering John Arrington and James Johnson Northwestern University & Argonne.
Two-photon physics in hadronic processes Marc Vanderhaeghen College of William & Mary / Jefferson Lab PPP7 workshop, Taipei, June , 2007.
Hadron form factor measurements at large momentum transfer Egle Tomasi-Gustafsson IRFU, SPhN- Saclay, and IN2P3- IPN Orsay France Kolomna, 11-VI
Search for two-photon effects in charge asymmetry measurements from electron and positron scattering on nucleon and nuclei E. Tomasi-Gustafsson 1,2, M.
Measurements with Polarized Hadrons T.-A. Shibata Tokyo Institute of Technology Aug 15, 2003 Lepton-Photon 2003.
Andrei Afanasev, JLab Users Workshop, 6/22/05 Operated by the Southeastern Universities Research Association for the U.S. Dept. of Energy Two-Photon Exchange.
DIS Conference, Madison WI, 28 th April 2005Jeff Standage, York University Theoretical Motivations DIS Cross Sections and pQCD The Breit Frame Physics.
Exclusive electroproduction of two pions at HERA V. Aushev (on behalf of the ZEUS Collaboration) April 11-15, 2011 Newport News Marriott at City Center.
Proton Form Factor Measurements with Polarization Method L.Pentchev The College of William and Mary For the GEp-2  and GEp-III collaborations JLab, June.
Enke Wang (Institute of Particle Physics, Huazhong Normal University) I.Jet Quenching in QCD-based Model II.Jet Quenching in High-Twist pQCD III.Jet Tomography.
Hall C Summer Workshop August 6, 2009 W. Luo Lanzhou University, China Analysis of GEp-III&2γ Inelastic Data --on behalf of the Jefferson Lab Hall C GEp-III.
Non-Linear Effects in Strong EM Field Alexander Titov Bogoliubov Lab. of Theoretical Physics, JINR, Dubna International.
Envisioned PbWO4 detector Wide-Angle Compton Scattering at JLab-12 GeV with a neutral-particle detector With much input from B. Wojtsekhowski and P. Kroll.
DVCS Radiative Corrections C. Hyde Old Dominion University, Norfolk, VA (and update to come) Hall A DVCS Collaboration.
TPE Contributions to Proton EM Properties in TL Region Dian-Yong Chen Institute of High Energy Physics, Beijing
Lecture 4 – Quantum Electrodynamics (QED)
Timelike Compton Scattering at JLab
Introduction to pQCD and TMD physics
MC generator for the process e+e-  with RC pro mille accuracy
Andrei Afanasev The George Washington University, Washington, DC
Cross section of the process
Lecture 2 Evolution and resummation
P I N P Two Photon Exchange in elastic electron-proton scattering: QCD factorization approach Nikolai Kivel in collaboration with M. Vanderhaeghen DSPIN-09.
The College of William and Mary Charlottesville, October 9, 2008
Scott A. Yost Baylor University with S. Jadach and B.F.L. Ward
Proton Form Factors Over a period of time lasting at least 2000 years,
Study of Strange Quark in the Nucleon with Neutrino Scattering
Overview of Radiative Corrections
Two-photon physics in elastic electron-nucleon scattering
Section VII - QCD.
Deeply Virtual Neutrino Scattering at Leading Twist
Lecture 2: Invariants, cross-section, Feynman diagrams
Radiative corrections FOR PYTHIA
Radiative Corrections : selected comments
Egle TOMASI-GUSTAFSSON
GEp-2γ experiment (E04-019) UPDATE
Modified Fragmentation Function in Strong Interaction Matter
Presentation transcript:

CEA DSM Dapnia Egle TOMASI-GUSTAFSSONAugust 5, High order radiative corrections in Electron-Proton scattering Egle Tomasi-Gustafsson Saclay, France JLab, August 5, 2008 In collaboration with Yu. Bystriskiy, V. Bytev and Prof. E.A. Kuraev

CEA DSM Dapnia Egle TOMASI-GUSTAFSSONAugust 5, Cross section of (quasi)elastic ep-scattering Elastic Inelastic Higher order inelastic double brehmstrahlung, pair production.. Classify radiative corrections:

CEA DSM Dapnia Egle TOMASI-GUSTAFSSONAugust 5, Unpolarized case

CEA DSM Dapnia Egle TOMASI-GUSTAFSSONAugust 5, Feynman diagrams, for the scattering amplitude Elastic scattering

CEA DSM Dapnia Egle TOMASI-GUSTAFSSONAugust 5, Single bremstrahlung

CEA DSM Dapnia Egle TOMASI-GUSTAFSSONAugust 5, Double Bremstrahlung and Pair Production Lowest order radiative corrections (RC): Mo and Tsai (1969) Infrared divergences : « photon mass », Logarithmic enhancement:

CEA DSM Dapnia Egle TOMASI-GUSTAFSSONAugust 5, Vacuum Polarization Main contribution: vacuum polarization due to electron positron pair

CEA DSM Dapnia Egle TOMASI-GUSTAFSSONAugust 5, Vertex function The contribution to F 2 (Q 2 ) is suppressed by compared to F 1 (Q 2 ) The « photon mass »,, is an auxiliary parameter, which does not enter in the final answer for the cross section

CEA DSM Dapnia Egle TOMASI-GUSTAFSSONAugust 5, Collinear Emission of Photons Contains logarithmic enhancement Suffers from infrared divergences

CEA DSM Dapnia Egle TOMASI-GUSTAFSSONAugust 5,

CEA DSM Dapnia Egle TOMASI-GUSTAFSSONAugust 5, Scattered electron energy All orders of PT needed  beyond Mo & Tsai approximation! Initial state emission final state emission Quasi-elastic scattering 3% Y0Y0 Not so small! Shift to LOWER Q 2

CEA DSM Dapnia Egle TOMASI-GUSTAFSSONAugust 5, Short history (I) Schwinger: corrections to cross section for electron scattering in external field  =  0 (1+  ) (1)  Yennie, Frauchi, Suura: cross section of any pure process (without real photon emission) is zero.  Kessler, Ericsson, Baier, Fadin, Khoze, Y. Tsai : quasi real electron method. Emission of hard photon is described in terms of a convolution of a radiative function with Born cross section.   (1) Not adequate

CEA DSM Dapnia Egle TOMASI-GUSTAFSSONAugust 5, Short history (II) 1977: Altarelli Parisi Gribov Lipatov, Dokshitzer: (DGLAP) Asymptotic freedom, evolution equation, Collins factorization theorem. Drell-Yan picture of hard processed in QED : application of QCD ideas to QED: radiative corrections in form of structure functions and Drell-Yan picture Leading terms: and non leading terms explicitely taken into account in DGLAP evolution equations. In QED known as Lipatov equations (1975).

CEA DSM Dapnia Egle TOMASI-GUSTAFSSONAugust 5, Structure Function method SF method applied to QED processes: calculation of radiative corrections with precision ~ 0.1%. Takes into account the dynamics of the process Formulated in terms of parton densities (leptons, antileptons, photons) Many applications to different processes E. A. Kuraev and V.S. Fadin, Sov. J. of Nucl. Phys. 41, 466 (1985) Lipatov equations (1975)

CEA DSM Dapnia Egle TOMASI-GUSTAFSSONAugust 5, Structure Function Method (Applications) –e+e-  hadrons( J/  width) E. A. KURAEV and V.S. FADIN, Sov. J. of Nucl. Phys. 41, 466 (1985) –ep  e’X (elastic and inelastic scattering) E. A. KURAEV ;N.P. MERENKOV and V.S. FADIN, Sov. J. of Nucl. Phys. 47,1009 (1988) –Decay width of mesons (FSI) E. A. KURAEV, JETP Lett.65, 127 (1997) –Radiative corrections for LEP beam (small angle BHABHA scattering) A.B.Arbuzov, E.A.Kuraev et al, Phys. Lett.B 399, 312 (1997) –Compton and double Compton scattering A.N.Ilyichev, E.A. Kuraev, V.Bytev and Y. P. Peresun'ko, J. Exp. Theor. Phys (2005) –Structure function method applied to polarized and unpolarized electron-proton scattering: A solution of the GE(p)/GM(p) discrepancy. Y. Bystricky, E.A.Kuraev, E. Tomasi-Gustafsson, Phys. Rev. C75, (2007). – Radiative corrections to DVCS electron tensor. V.Bytev, E.A.Kuraev, E. Tomasi-Gustafsson, Phys. Rev. C (2008)

CEA DSM Dapnia Egle TOMASI-GUSTAFSSONAugust 5, The Structure Function Method Distinguish: -leading contributions of higher order -non leading ones E. A. K. and V.S. FADIN, Sov. J. of Nucl. Phys. 41, 466 (1985) The SF method is based on: Renormalization group evolution equation Drell-Yan parton picture of the cross section in QCD Electron SF: probability to ‘find’ electron in the initial electron, with energy fraction x and virtuality up to Q 2

CEA DSM Dapnia Egle TOMASI-GUSTAFSSONAugust 5, LSF: ‰ precision E. A. K. and V.S. FADIN, Sov. J. of Nucl. Phys. 41, 466 (1985) LLA (Leading Logarithm Approximation) Precision of LLA Even when corrections in first order PT are  ~100%, the accuracy of higher order RC (LSF) is  1% ! Including K-factor

CEA DSM Dapnia Egle TOMASI-GUSTAFSSONAugust 5, The LSF cross section (for ep ) If the electron is detected in a calorimeter:  the cross section is integrated over the scattered electron energy fraction: The K-factor includes all non leading contributions:

CEA DSM Dapnia Egle TOMASI-GUSTAFSSONAugust 5, Results Both calculations assume dipole FFs The slope changes (due to different RC) Q 2 =1 GeV 2 Q 2 =5 GeV 2 Q 2 =3 GeV 2 SF Born Polarization RC Born ……… E.T-G, Phys. Part. Nucl. Lett. 4, (2007).

CEA DSM Dapnia Egle TOMASI-GUSTAFSSONAugust 5, Unpolarized Cross section Born +dipole FFs (=unpolarized experiment+Mo&Tsai) SF (with dipole FFs) SF+2  exchange Q 2 =3 GeV 2 Q 2 =5 GeV 2 SF: change the slope! Q 2 =1 GeV 2 2  exchange very small!

CEA DSM Dapnia Egle TOMASI-GUSTAFSSONAugust 5, Polarization ratio Born SF SF+2  exchange  =60° 2  destroys linearity! 2  exchange very small!  =80°  =20° Yu. Bystricky, E.A.Kuraev, E. T.-G, Phys. Rev. C 75, (2007)

CEA DSM Dapnia Egle TOMASI-GUSTAFSSONAugust 5, Radiative Corrections (SF method) Polarization data JLab data SLAC data Yu. Bystricky, E.A.Kuraev, E. Tomasi-Gustafsson, Phys. Rev. C75, (2007) SF corrected Rosenbluth parameters highly correlated! E.T-G, Phys. Part. Nucl. Lett. 4, 281 (2007)

CEA DSM Dapnia Egle TOMASI-GUSTAFSSONAugust 5, Interference DVCSBethe-Heitler

CEA DSM Dapnia Egle TOMASI-GUSTAFSSONAugust 5, Charge Asymmetry RC (LSF) RC(1st order)

CEA DSM Dapnia Egle TOMASI-GUSTAFSSONAugust 5, HELICITY Asymmetry

CEA DSM Dapnia Egle TOMASI-GUSTAFSSONAugust 5, Conclusions High precision experiments need highly precise Radiative Corrections Higher order corrections become more and more important at large Q 2 The lepton structure function method can be applied to different electromagnetic processes with permille precision Higher order corrections depend on the relevant kinematical variables

CEA DSM Dapnia Egle TOMASI-GUSTAFSSONAugust 5, Radiative Corrections (first order) The cross section: The correction ( in powers of Z): Z0: electron emission and vacuum polarization Z1: interference 1  -2  exchange  Z2: target emission L.C. Maximon and J.A Tjon, PRC 62, (2000)

CEA DSM Dapnia Egle TOMASI-GUSTAFSSONAugust 5, LSF Corrections (High orders included) The cross section: The correction ( Leading Logarithm Approximation): The vacuum polarization: The K-factor:

CEA DSM Dapnia Egle TOMASI-GUSTAFSSONAugust 5, Radiative Corrections Yu. Bystricky, E.A.Kuraev, E. T-G, Phys. Rev. C75, (2007) Q 2 =1 GeV 2 L.C. Maximon and J.A Tjon, PRC 62, (2000)

CEA DSM Dapnia Egle TOMASI-GUSTAFSSONAugust 5, LSF electron (not LLA) MT (Z0) electron MT total LSF LLA MT (Z) two photon LSF protonMT (Z2) proton LSF total Radiative Corrections

CEA DSM Dapnia Egle TOMASI-GUSTAFSSONAugust 5, LSF total LSF LLA MT (Z0) total MT (Z0) electron MT (Z0) two photon LSF proton MT proton LSF electron (not LLA)

CEA DSM Dapnia Egle TOMASI-GUSTAFSSONAugust 5,

CEA DSM Dapnia Egle TOMASI-GUSTAFSSONAugust 5, LSF correction (SLAC data) point by point Q 2 =5 GeV 2

CEA DSM Dapnia Egle TOMASI-GUSTAFSSONAugust 5, The Pauli and Dirac Form Factors Normalization F 1p (0)=1, F 2p (0)= κ p G Ep (0)=1, G Mp (0)=μ p =2.79 The electromagnetic current in terms of the Pauli and Dirac FFs: Related to the Sachs FFs :

CEA DSM Dapnia Egle TOMASI-GUSTAFSSONAugust 5, Analytical properties of Compton amplitude Elastic form factors and inelastic channels are not independent  SUM RULES

CEA DSM Dapnia Egle TOMASI-GUSTAFSSONAugust 5, Analytical properties of Compton amplitude Neglect left contribution and close contour on the right side (10% accuracy): Cancellation of strong interaction effects in FFs and inelastic channels! Cancellation proved exactly in QED: the L 2  * - contribution to FFs is cancelled by soft photon emission

CEA DSM Dapnia Egle TOMASI-GUSTAFSSONAugust 5,  resonance (example of inelastic channels) Small contribution ~0.5% Opposite sign with respect to proton intermediate state Cancellation of contributions in elastic and inelastic channels

CEA DSM Dapnia Egle TOMASI-GUSTAFSSONAugust 5, Interference of 1   2  exchange –Enhancement due to the fast decreasing of form factors (transferred momentum equally shared between the two photons). –Dipole approximation of FFs: Q 0 2 =0.71GeV 2

CEA DSM Dapnia Egle TOMASI-GUSTAFSSONAugust 5, Interference of 1   2  exchange Explicit calculation for structureless proton –The contribution is small, for unpolarized and polarized ep scattering –Does not contain the enhancement factor L –The relevant contribution to K is ~ 1 E.A.Kuraev, V. Bytev, Yu. Bystricky, E.T-G, Phys. Rev. D74, (1076)

CEA DSM Dapnia Egle TOMASI-GUSTAFSSONAugust 5, Two Photon Exchange No exact calculation for ep scattering ( inelastic intermediate states..) but electron-muon scattering constitutes an upper limit!

CEA DSM Dapnia Egle TOMASI-GUSTAFSSONAugust 5, QED versus QCD Imaginary part of the 2  amplitude electron proton

CEA DSM Dapnia Egle TOMASI-GUSTAFSSONAugust 5, QED versus QCD Q 2 =0.05 GeV 2 Q 2 =1.2 GeV 2 Q 2 =2 GeV 2