Indian Institute of Technology Kharagpur PALLAB DASGUPTA Graph Theory: Introduction Pallab Dasgupta, Professor, Dept. of Computer Sc. and Engineering,

Slides:



Advertisements
Similar presentations
Lecture 5 Graph Theory. Graphs Graphs are the most useful model with computer science such as logical design, formal languages, communication network,
Advertisements

Edge-connectivity and super edge-connectivity of P 2 -path graphs Camino Balbuena, Daniela Ferrero Discrete Mathematics 269 (2003) 13 – 20.
22C:19 Discrete Math Graphs Fall 2010 Sukumar Ghosh.
22C:19 Discrete Math Graphs Fall 2014 Sukumar Ghosh.
13 May 2009Instructor: Tasneem Darwish1 University of Palestine Faculty of Applied Engineering and Urban Planning Software Engineering Department Introduction.
Graphs – Basic Concepts
Graph. Undirected Graph Directed Graph Simple Graph.
Mycielski’s Construction Mycielski’s Construction: From a simple graph G, Mycielski’s Construction produces a simple graph G’ containing G. Beginning with.
1 Section 8.4 Connectivity. 2 Paths In an undirected graph, a path of length n from u to v, where n is a positive integer, is a sequence of edges e 1,
MCA 520: Graph Theory Instructor Neelima Gupta
K-Coloring k-coloring: A k-coloring of a graph G is a labeling f: V(G)  S, where |S|=k. The labels are colors; the vertices of one color form a color.
Problem: Induced Planar Graphs Tim Hayes Mentor: Dr. Fiorini.
Curve Curve: The image of a continous map from [0,1] to R 2. Polygonal curve: A curve composed of finitely many line segments. Polygonal u,v-curve: A polygonal.
K-Coloring k-coloring: A k-coloring of a graph G is a labeling f: V(G)  S, where |S|=k. The labels are colors; the vertices of one color form a color.
Problem: Induced Planar Graphs Tim Hayes Mentor: Dr. Fiorini.
Discrete Mathematics Lecture 9 Alexander Bukharovich New York University.
22C:19 Discrete Math Graphs Spring 2014 Sukumar Ghosh.
GRAPH Learning Outcomes Students should be able to:
Graph Theoretic Concepts. What is a graph? A set of vertices (or nodes) linked by edges Mathematically, we often write G = (V,E)  V: set of vertices,
CSE, IIT KGP Euler Graphs and Digraphs. CSE, IIT KGP Euler Circuit We use the term circuit as another name for closed trail.We use the term circuit as.
CSE, IIT KGP Graph Theory: Introduction Pallab Dasgupta Dept. of CSE, IIT
© by Kenneth H. Rosen, Discrete Mathematics & its Applications, Sixth Edition, Mc Graw-Hill, 2007 Chapter 9 (Part 2): Graphs  Graph Terminology (9.2)
Chapter 1 Fundamental Concepts II Pao-Lien Lai 1.
Copyright © Zeph Grunschlag, More on Graphs.
1 CS104 : Discrete Structures Chapter V Graph Theory.
Based on slides by Y. Peng University of Maryland
Data Structures & Algorithms Graphs
Basic Notions on Graphs. The House-and-Utilities Problem.
Chapter 1 Fundamental Concepts Introduction to Graph Theory Douglas B. West July 11, 2002.
1 12/2/2015 MATH 224 – Discrete Mathematics Formally a graph is just a collection of unordered or ordered pairs, where for example, if {a,b} G if a, b.
CSE, IIT KGP Graph Coloring. CSE, IIT KGP K-coloring A k-coloring of G is a labeling f:V(G)  {1,…,k}.A k-coloring of G is a labeling f:V(G)  {1,…,k}.
CSS106 Introduction to Elementary Algorithms
September1999 CMSC 203 / 0201 Fall 2002 Week #13 – 18/20/22 November 2002 Prof. Marie desJardins.
Unit – V Graph theory. Representation of Graphs Graph G (V, E,  ) V Set of vertices ESet of edges  Function that assigns vertices {v, w} to each edge.
Week 1 – Introduction to Graph Theory I Dr. Anthony Bonato Ryerson University AM8002 Fall 2014.
An Introduction to Graph Theory
Graph Theory and Applications
CSCI 115 Chapter 8 Topics in Graph Theory. CSCI 115 §8.1 Graphs.
Graph theory and networks. Basic definitions  A graph consists of points called vertices (or nodes) and lines called edges (or arcs). Each edge joins.
Indian Institute of Technology Kharagpur PALLAB DASGUPTA Graph Theory: Hamiltonian Cycles Pallab Dasgupta, Professor, Dept. of Computer Sc. and Engineering,
 Quotient graph  Definition 13: Suppose G(V,E) is a graph and R is a equivalence relation on the set V. We construct the quotient graph G R in the follow.
Introduction to Graph Theory
Basic Operations on Graphs Lecture 5.. Basic Operations on Graphs Deletion of edges Deletion of vertices Addition of edges Union Complement Join.
CSE, IIT KGP Graph Theory: Introduction Pallab Dasgupta Dept. of CSE, IIT
Introduction to Graph Theory By: Arun Kumar (Asst. Professor) (Asst. Professor)
Chapter 20: Graphs. Objectives In this chapter, you will: – Learn about graphs – Become familiar with the basic terminology of graph theory – Discover.
Indian Institute of Technology Kharagpur PALLAB DASGUPTA Graph Theory: Trees Pallab Dasgupta, Professor, Dept. of Computer Sc. and Engineering, IIT
Chromatic Coloring with a Maximum Color Class Bor-Liang Chen Kuo-Ching Huang Chih-Hung Yen* 30 July, 2009.
Indian Institute of Technology Kharagpur PALLAB DASGUPTA Graph Theory: Planarity Pallab Dasgupta, Professor, Dept. of Computer Sc. and Engineering, IIT.
Indian Institute of Technology Kharagpur PALLAB DASGUPTA Graph Theory: Matchings and Factors Pallab Dasgupta, Professor, Dept. of Computer Sc. and Engineering,
1 GRAPH Learning Outcomes Students should be able to: Explain basic terminology of a graph Identify Euler and Hamiltonian cycle Represent graphs using.
Leda Demos By: Kelley Louie Credits: definitions from Algorithms Lectures and Discrete Mathematics with Algorithms by Albertson and Hutchinson graphics.
Applied Discrete Mathematics Week 14: Trees
Chapter 9 (Part 2): Graphs
Special Graphs By: Sandeep Tuli Astt. Prof. CSE.
Grade 11 AP Mathematics Graph Theory
Chapter 5 Fundamental Concept
Graph theory Definitions Trees, cycles, directed graphs.
Based on slides by Y. Peng University of Maryland
Graph.
Discrete Mathematics and its Applications Lecture 1 – Graph Theory
Planarity.
Graph Theory: Cuts and Connectivity
Graph Theory: Proof Techniques
Introduction to Graph Theory
Graph Theory: Euler Graphs and Digraphs
Applied Discrete Mathematics Week 13: Graphs
Graph Theory: Degree Sequences and Digraphs
Based on slides by Y. Peng University of Maryland
HW 3 (Due Wednesday Feb 6) Create slide(s) for your 1 minute presentation on a graph theory application. Make sure your slide(s) include (1) Define the.
Presentation transcript:

Indian Institute of Technology Kharagpur PALLAB DASGUPTA Graph Theory: Introduction Pallab Dasgupta, Professor, Dept. of Computer Sc. and Engineering, IIT

Indian Institute of Technology Kharagpur PALLAB DASGUPTA Resources Copies of slides available at: Book to be followed mainly: Introduction to Graph Theory -- Douglas B West

Indian Institute of Technology Kharagpur PALLAB DASGUPTA Graph Theory A graph is a discrete structure – Mathematically, a relation Graph theory is about studying – Properties of various types of Graphs – … and graph algorithms Why should CSE students study graph theory?

Indian Institute of Technology Kharagpur PALLAB DASGUPTA Graphs can be used to model problems The following table illustrates a number of possible duties for the drivers of a bus company. We wish to ensure at the lowest possible cost, that at least one driver is on duty for each hour of the planning period (9 AM to 5 PM). Duty hours9 – 19 – 1112 – 312 – 52 – 51 – 44 – 5 Cost

Indian Institute of Technology Kharagpur PALLAB DASGUPTA Graphs can be used to model problems 1

Indian Institute of Technology Kharagpur PALLAB DASGUPTA Graph A graph G = (V,E) with n vertices and m edges consists of: – a vertex set V(G) = {v 1, …, v n }, and – an edge set E(G) = {e 1, …, e m }, where each edge consists of two (possibly equal) vertices called its endpoints. We write uv for an edge e={u,v}, and say that u and v are adjacent A simple graph is a graph having no loops or multiple edges – What is a loop ?

Indian Institute of Technology Kharagpur PALLAB DASGUPTA Digraph A directed graph or digraph G consists of a vertex set V(G) and an edge set E(G), where each edge is an ordered pair of vertices. – A simple digraph is a digraph in which each ordered pair of vertices occurs at most once as an edge. – Throughout this course we shall consider undirected simple graphs, unless mentioned otherwise.

Indian Institute of Technology Kharagpur PALLAB DASGUPTA Complement The complement G of a simple graph G is the simple graph with vertex set V(G) and edge set defined by: – uv  E(G ) if and only if uv  E(G)

Indian Institute of Technology Kharagpur PALLAB DASGUPTA Subgraph A subgraph of a graph G is a graph H, such that: – V(H)  V(G) and E(H)  E(G) An induced subgraph of G is a subgraph H of G such that E(H) consists of all edges of G whose endpoints belong to V(H)

Indian Institute of Technology Kharagpur PALLAB DASGUPTA Complete Graph / Clique A complete graph or a clique is a simple graph in which every pair of vertices is an edge. – We use the notation K n to denote a clique of n vertices – The complement K n of K n has no edges – How does an induced subgraph of a clique look like?

Indian Institute of Technology Kharagpur PALLAB DASGUPTA Independent set An independent subset in a graph G is a vertex subset S  V(G) that contains no edge of G

Indian Institute of Technology Kharagpur PALLAB DASGUPTA Bipartite Graph A graph G is bipartite if V(G) is the union of two disjoint sets such that each edge of G consists of one vertex from each set. – A complete bipartite graph is a bipartite graph whose edge set consists of all pairs having a vertex from each of the two disjoint sets of vertices – A complete bipartite graph with partite sets of sizes r and s is denoted by K r,s

Indian Institute of Technology Kharagpur PALLAB DASGUPTA K-partite Graph A graph G is k-partite if V(G) is the union of k independent sets.

Indian Institute of Technology Kharagpur PALLAB DASGUPTA Chromatic number A graph is k-colorable, if we can color the vertices of the graph using k colors such that the endpoints of each edge have different colors – The chromatic number,  (G) of a graph G is the minimum number of colors required to color G.

Indian Institute of Technology Kharagpur PALLAB DASGUPTA Planar Graph A graph is planar if it can be drawn in the plane without edge crossings

Indian Institute of Technology Kharagpur PALLAB DASGUPTA Path & Cycle A path in a graph is a single vertex or an ordered list of distinct vertices v 1, …, v k such that v i-1 v 1 is an edge for all 2  i  k. – the ordered list is a cycle if v k v 1 is also an edge – A path is an u,v-path if u and v are respectively the first and last vertices on the path – A path of n vertices is denoted by P n, and a cycle of n vertices is denoted by C n.

Indian Institute of Technology Kharagpur PALLAB DASGUPTA Connected Graph A graph G is connected if it has a u,v-path for each pair u,v  V(G).

Indian Institute of Technology Kharagpur PALLAB DASGUPTA Walk and Trail A walk of length k is a sequence, v 0,e 1,v 1,e 2, …, e k,v k of vertices and edges such that e i = v i-1 v i for all i. A trail is a walk with no repeated edge. – A path is a walk with no repeated vertex – A walk is closed if it has length at least one and its endpoints are equal – A cycle is a closed trail in which “first = last” is the only vertex repetition – A loop is a cycle of length one

Indian Institute of Technology Kharagpur PALLAB DASGUPTA Equivalence Relation A relation R on a set S is a collection of ordered pairs from S. An equivalence relation is a relation R that is reflexive, symmetric and transitive.

Indian Institute of Technology Kharagpur PALLAB DASGUPTA Graphs as Relations A graph is an adjacency relation. For simple undirected graphs the relation is symmetric, and not reflexive. – The adjacency relation is not necessarily an equivalence relation, since it is not necessarily transitive.

Indian Institute of Technology Kharagpur PALLAB DASGUPTA Graph Isomorphism An isomorphism from G to H is a bijection f:V(G)  V(H) such that uv  E(G) if and only if f(u)f(v)  E(H). – We say that G is isomorphic to H, written as G  H, if there is an isomorphism from G to H. – Is isomorphism an equivalence relation?

Indian Institute of Technology Kharagpur PALLAB DASGUPTA Automorphism An automorphism of G is a permutation of V(G) that is an isomorphism from G to G. – A graph is called vertex transitive if for every pair u,v  V(G) there is an automorphism that maps u to v.

Indian Institute of Technology Kharagpur PALLAB DASGUPTA Union, Sum, Join The union of graphs G and H, written as G  H, has vertex set V(G)  V(H) and edge set E(G)  E(H). – To specify the disjoint union V(G)  V(H) = , we write G+H. – mG denotes the graph consisting of m pairwise disjoint copies of G. – The join of G and H, written as G  H is obtained from G+H by adding the edges {xy : x  V(G), y  V(H)} Is (G+H) = G  H ?

Indian Institute of Technology Kharagpur PALLAB DASGUPTA Cut-vertex, Cut-edge The components of a graph G are its maximal connected sub- graphs. – A component is non-trivial if it contains an edge. – A cut-edge or cut-vertex of a graph is an edge or vertex whose deletion increases the number of components