LUMINESCENCE OF RE OVERSATURATED CRYSTALS A. Gektin a *, N. Shiran a, V. Nesterkina a, G. Stryganyuk b, K. Shimamura c, E. Víllora c, K. Kitamura c a Institute.

Slides:



Advertisements
Similar presentations
Uv spectroscopy.
Advertisements

A new route for the hydrothermal synthesis of Eu doped tin oxide nanoparticles D. Tarabasanu-Mihaila 1 *, L. Diamandescu 1, M. Feder 1, S. Constantinescu.
Relations between crystal structures
CHE Materials Chemistry & Catalysis : Solid State Chemistry lecture 4
Dense Scintillating Crystals and Glasses for HEP Dual Readout Calorimeter Tianchi Zhao University of Washington Dec. 4, 2007 Dual Readout Calorimeter Biweekly.
Excited-state structure and dynamics of high-energy states in lanthanide materials Mike Reid, Jon-Paul Wells, Roger Reeves, Pubudu Senanayake, Adrian Reynolds.
Lanthanide Complexes as Luminescent Labelsby Photonic Research Systems Ltd Web: Material(c) Photonic Research Systems Ltd
Molecular Luminescence Spectrometry Chap 15. Three Related Optical Methods Fluorescence Phosphorescence Chemiluminescence } From excitation through absorption.
1 Thermally induced 4f – 5d transitions in LuAlO 3 :Ce (LuAP) A.J. Wojtowicz, S. Janus Institute of Physics, N. Copernicus Univ. Toruń, POLAND IEEE 9th.
1 VUV spectroscopy of BaF 2 :Er A.J. Wojtowicz Institute of Physics, N. Copernicus Univ. Toruń, POLAND FPS 2007 French-Polish Symposium on Spectroscopy.
Scintillators.
Scintillation properties of selected oxide monocrystals activated with Ce and Pr A.J. Wojtowicz 1), W. Drozdowski 1), and D. Wisniewski 1) J.L. Lefaucheur.
Photonic Crystal Fiber for Radiation Sensors Feng Wu Khalid Ikram Sacharia Albin Feng Wu Khalid Ikram Sacharia Albin Photonic Laboratory Old Dominion University.
Chapter 15 Molecular Luminescence Spectrometry Molecular Fluorescence  Optical emission from molecules that have been excited to higher energy levels.
INTRO TO SPECTROSCOPIC METHODS (Chapter 6 continued ) Quantum-Mechanical Properties Of Light Photoelectric Effect Photoelectric Effect Energy States of.
Molecular Luminescence
Radiology is concerned with the application of radiation to the human body for diagnostically and therapeutically purposes. This requires an understanding.
Optical Properties II: Emission of Light, Displays and Transparent Conductors Chemistry 754 Solid State Chemistry Lecture #22 May 21, 2003.
Heavy Scitillating Crystals and Glasses for a Combined EM and HCal at ILC Tianchi Zhao University of Washigton Sept. 25, 2007.
1 Scintillators  One of the most widely used particle detection techniques Ionization -> Excitation -> Photons -> Electronic conversion -> Amplification.
Computer modelling of the concentration dependence of doping in solid state ionic materials Robert A Jackson School of Physical and Geographical Sciences,
SOLID STATE.
THE SPECTROSCOPIC INVESTIGATION OF THE UP-CONVERSION NANOPARTICLES FOR BIOMEDICAL APPLICATIONS D.V. Pominova, A.V. Ryabova, S.V. Kuznetsov, A.A. Luginina.
UV and VUV spectroscopy of rare earth activated wide bandgap materials A.J. Wojtowicz Institute of Physics, N. Copernicus Univ. Toruń, POLAND II International.
RESULTS I: Comparison for the different rare-gases Xenon SO constant = eV E( 2 P 1/2 ) – E( 2 P 3/2 ) = eV D 0 (Xe 3 + ) = eV 1 Experiment:
Luminescence and excitation spectra due to inter- and intraconfigurational transitions of Er 3+ in YAG:Er Aleksanyan Eduard a,b*, Harutunyan Vachagan b,
1 Components of Optical Instruments Lecture Silicon Diode Transducers A semiconductor material like silicon can be doped by an element of group.
Results Study of Carrier Dynamics in ZnSe Based Scintillators by Frequency Domain Lifetime Measurements J.Mickevičius, P.Vitta, G.Tamulaitis, A. Žukauskas.
Points of Interest Synthesis Crystallography Physical Properties.
Influence of oxygen content on the 1.54 μm luminescenceof Er-doped amorphous SiO x thin films G.WoraAdeola,H.Rinnert *, M.Vergnat LaboratoiredePhysiquedesMate´riaux.
Time-Resolved Photoluminescence Spectroscopy of InGaAs/InP Heterostructures* Colleen Gillespie and Tim Gfroerer, Davidson College, Davidson, NC Mark Wanlass,
Colossal Magnetoresistance of Me x Mn 1-x S (Me = Fe, Cr) Sulfides G. A. Petrakovskii et al., JETP Lett. 72, 70 (2000) Y. Morimoto et al., Nature 380,
Modelling mixed metal fluorides for optical applications Robert A Jackson Lennard-Jones Laboratories School of Physical and Geographical Sciences Keele.
1 Fast and efficient VUV/UV emissions from (Ba,La)F 2 :Er crystals Andrzej J. Wojtowicz, Sebastian Janus and Dawid Piatkowski N. Copernicus University,
Alexander Kudin Protective Coating on the Surface and Characteristics Stability of Scintillators Based on CsI Crystal at Natural and Radiation Aging Institute.
A review of computer modelling of rare earth doped mixed metal fluoride materials Robert A Jackson Lennard-Jones Laboratories School of Physical and Geographical.
Using computer modelling to help design materials for optical applications Robert A Jackson Chemical & Forensic Sciences School of Physical & Geographical.
Modelling the concentration dependence of doping in optical materials Robert A Jackson School of Physical and Geographical Sciences, Keele University,
UV i VUV spectroscopy of BaF 2 :Ce crystals (Report from Hasylab experiments) Andrzej J. Wojtowicz IF UMK Optoelectronics Seminar, Oct. 26, 2009.
Remon Ibrahim Remon Ibrahim High Energy Group.  Introduction  Experimental Techniques  Results  Conclusions Content.
Luminescent detectors of ionising radiation. L. Grigorjeva, P. Kulis, D. Millers, S. Chernov, M. Springis, I. Tale IWORDI Sept. Amsterdamm Institute.
Quenching of Fluorescence and Broadband Emission in Yb 3+ :Y 2 O 3 and Yb 3+ :Lu 2 O 3 3rd Laser Ceramics Symposium : International Symposium on Transparent.
Disorder in crystals. All lattice points are not always the same.
The Effect of Annealing Conditions and Concentration on 5 D 3  7 F J Emission in Terbium-doped Sol-gel Glasses * Colleen Gillespie and Dan Boye, Davidson.
1 Quantum phosphors Observation of the photon cascade emission process for Pr 3+ - doped phosphors under vacuum ultraviolet (VUV) and X-ray excitation.
Chapter 30 Light Emission Radio waves are produced by electrons moving up and down an antenna. Visible light is produced by electrons changing energy.
J.Vaitkus IWORID6, Glasgow,
Förster Resonance Energy Transfer (FRET)
1.1 What’s electromagnetic radiation
Y.C. Hu 1, X.S. Wu 1, J.J. Ge 1, G.F. Cheng 2 1. Nanjing National Laboratory of Microstructures, Department of Physics, Nanjing University, Nanjing ,
Siyasanga Mpelane Vuyokazi Namntu Supervisor: V.A Skuratov
Spectroscopy of Luminescent Crystals Containing Rare Earth Elements Meng-Ling Chen, Kwang-Hwa Lii, and Bor-Chen Chang Department of Chemistry National.
The 2 nd HHCAL Workshop, Beijing, China5/9/2010 Search for Scintillation in Doped Lead Fluoride Crystals for the HHCAL Detector Concept Rihua Mao, Liyuan.
An introduction to Spectrometric Methods. Spectroscopy Definition Spectroscopy is a general term for the science that deal with the interactions of various.
Date of download: 6/26/2016 Copyright © 2016 SPIE. All rights reserved. X-ray diffractometer pattern of the Tb3+-doped glass containing silver nanoparticles.
Mossbauer spectroscopy
Date of download: 7/9/2016 Copyright © 2016 SPIE. All rights reserved. Comparison of luminescence spectra for Tm3+/Yb3+ codoped bulk ZLAG glass and ZLA.
by chemical solution process
Experimental results II Experimental results I
Intramolecular charge transfer (ICT) in two phenylpyrrol derivatives: PP and PBN Two similar molecules but a different behavior Danielle Schweke Baumgertan.
G. Tamulaitis, A. Augulis, V. Gulbinas, S. Nargelas, E. Songaila, A
Light Amplification by Stimulated
Absorbtion FTIR: Fourier transform infrared spectroscopy
The concentrations of impurities and point defects in melt grown ZnSe
G. Tamulaitis, S. Nargelas, A. Vaitkevicius, Vilnius University,
X-ray diffraction spectra during in situ annealing of FCZ glass
Literature seminar Yuna Kim
Strong Coupling of a Spin Ensemble to a Superconducting Resonator
Fluorescence of Samarium Ions in Strontium Bismuth Borate Glasses
Fluorescence of Samarium Ions in Strontium Bismuth Borate Glasses
Presentation transcript:

LUMINESCENCE OF RE OVERSATURATED CRYSTALS A. Gektin a *, N. Shiran a, V. Nesterkina a, G. Stryganyuk b, K. Shimamura c, E. Víllora c, K. Kitamura c a Institute for Scintillation Materials, NAS of Ukraine, Kharkov b HASYLAB at Deutsches Elektronensynchrotron DESY, Hamburg, Germany c Advanced Materials Lab., Nat. Inst. for Materials Science, Tsukuba, Japan

 Fluorides allows to modify properties Scintillator  phosphor  storage  dosimetry  Broad variety of crystal lattices  What is the RE doping optimum? Motivation LiCaAlF 6 LiSrAlF 6 LiCaAlF 6 / LiSrAlF 6 colquiriite LiBaF 3 LiBaF 3 perovskite ВаМgF 4 orthorhombic LiF LiF cubic BaF 2 fluorite  LiF – dosimeter  KMgF 3 (Eu) –UV dosimeter  BaFBr(Eu) – screen phosphor  BaF 2 – fast scintillator  LiBaF 3 (Ce)– n/  discriminator  CaF 2 (Eu) – scintillator

New phosphors M 1-x RE x F 2+x (M=Ca, Sr, Ba) Structure of fluorite MF 2 (М=Ca, Sr, Ba) FiFi V Fc {F 12 } Defect cluster [RE 6 F 36 ] Supercluster {M 8 [RE 6 F ]} RE 3+ -F i ¯ dipole dimer, trimer, etc. M 1-x RE x F 2+x REF 3 phase increase of RE 3+ concentration in fluoride matrix It is supposed that defect clusters and fluoride phases of non-stoichiometric crystals can form nanostructures that opens an possibility to engineering materials with various kinds of properties. detect clusters ~0.1%~1-2%~3-5%~10% 20-50%

Phase Diagrams of Ba 0.65 Pr 0.35 F 2.35 Systems Internal structure is not still clear but single crystals are available *)Rodnyi, Phys.Rev. (2005) BaF 2 BaF 2 –Pr (0.3 mol%) *) BaF 2 –Pr (3 mol%) *) BaF 2 –Pr (35 mol%) BaF 2 –Pr (35mol%)  Ba 0.65 Pr 0.35 F 2.35

RE oversaturated crystals Which properties will dominates? crystala, Å CaF (8) CaF 0.65 Eu 0.35 F (8) CaF 0.65 Pr 0.35 F (4) SrF Sr 0.65 Pr 0.35 F (2) BaF BaF 0.65 Pr 0.35 F (6) Me 1–x Pr x F 2+x M= Ca,Sr,Ba 0.22 < x < 0.5 ionR, Å Ca Eu Pr Sr Ba F–F– 1.19 Me 1–x Pr x F 2+x MeF 2 –Pr PrF 3

Fluorides phase structure, superlattice Non coherent inclusions nano phases Gleiter, Acta Met. (2000) Coherent inclusions M 2+ R 3+ Sobolev, Crystallography (2003) M 1-x R x F 2+x with R 3+ to 40%

Fluorides phase structure, superlattice Non coherent inclusions Coherent inclusions nano phases Coincidence lattice with R 3+ content 42.86% (Ba 4 Yb 3 F 17 ). Other step is 15.38% Sobolev, Crystallography (2003) Model of non stoichiometric crystal with R 3+ content 40%

Eu 2+  Eu 3+ transformation by “lattice engineering” 1. At energies E < 6.5 eV only interconfigurational 4f-4f transitions are observed; 2. Intraconfigurational 4f-5d and charge transfer (F – →Eu 3+ ) transitions occur in range of eV; CaF 2 (Eu) phosphor  Ca 0.65 Eu 0.35 F 2.35 Eu 2+ emission in CaF 2 (Eu) Eu 3+ emission in Ca 0.65 Eu 0.35 F 2.35 CCD camera sensitivity

BaF 2 –Pr photon cascade emission Cascade emission: 1 step: 1 S 0 → 1 I 6 (~400 нм) 2 step: 3 P 0 → 3 H 4 (~482 нм) Second step only Energy levels and Pr 3+ transitions (Rodnyi, Phys.Rev., 2005) BaF 0.65 Pr 0.35 F 2.35

Pr absorption in different hosts Ca 0.65 Pr 0.35 F 2.35 Sr 0.65 Pr 0.35 F 2.35 Ba 0.65 Pr 0.35 F 2.35  Absorption peaks structure is similar for different hosts

Clasters structure and Pr 3+ excitation spectra Excitation for em = 250 нм 1. CaF 2 –Pr (0.1%) 2. Ca 0.65 Pr 0.35 F 2.35  Broad excitation spectra due to Pr 3+ cluster structure and peaks overlapping 300K 8K

Hexagonal, space group Emission spectra, 8K Ca 0.65 Pr 0.35 F 2.35 Sr 0.65 Pr 0.35 F 2.35 Ba 0.65 Pr 0.35 F 2.35

Emission spectra (photoexcitation), 300K Ca 0.65 Pr 0.35 F 2.35 Sr 0.65 Pr 0.35 F 2.35

Multi cluster structure Decay curves for different cluster peak excitation Ca 0.65 Pr 0.35 F 2.35

 – luminescence and glow curve CaPrF 223 nm   o < 5 ns, 250 nm   1 =25 ns and  2 =262 ns 273 nm   1 =54 ns and  2 =300 ns 400 nm   1 =71 ns and  =330 ns SrPrF 230 and 275 nm   o <5 ns 325 nm   1 =35 ns 400 nm   1 =34 ns 475 nm   1 =23 нс and  2 =139 ns. BaPrF 250 nm   o < 1 ns 325 nm   1 =37 ns 480 nm   2 =101 ns and  3 =549 ns Glow curve

Hexagonal, space group Properties Crystal CaF 2 :0.1%PrCa 0.65 Pr 0.35 F 2.35 PrF 3 StructureCubic fluorite Lattice constant, Å (8) (4)7.078 / Coordination number 8>89 X-ray emission 77K 5d–4f, UV 1 S o - 1 I o 3 P H 4 233, 251, 272nm ― 482nm 233, 251, 272nm 400 nm ― 233, 251, 272nm 400 nm ― Photoluminescence Pr 3+ 5d–4f 1 S o - 1 I o 3 P H 4 233, 251, 272nm ― 482nm 233, 251, 272nm 400 nm ― 233, 251, 272nm 400 nm ― Excitation of d f Pr 3+ emission C 4v site154, , , , Cluster τ 1 (5d–4f), ns τ 2 ( 1 S 0 – 1 I 6 ), ns 20~ ~ Ca–Pr–F compound emission

CompoundSrF %PrSr 0.65 Pr 0.35 F 2.35 PrF 3 Structurefluoride distorted hexagonal Lattice constant a, Å (2) Coordination number 8>89 X-ray emission 5d–4f, UV 1 S o - 1 I o 3 P H 4 233, 251, 272nm ― 482nm 233, 251, 272nm 400nm 482nm 233, 251, 272nm 400 nm ― Photoluminescence 5d–4f, UV 1 S o - 1 I o 3 P H 4 233, 251, 272nm ― 482nm 233, 251, 272nm 400 nm 482nm 233, 251, 272nm 400 nm ― Excitation of d f, nm single Pr , 218 cluster―223, 160 −190223, Decay time  1, (5d–4f)  2, ( 1 S o - 1 I o )  2, ( 3 P H 4 ) 25 ― < , ― Sr–Pr–F compound emission

Photon cascade conditions 1. S level should be separated from f-d level 2. Minimal influence of cross relaxation This has to corresponds to: * coordination number more then 8-9 * large distance between Pr and anion ions CaF 2 :Pr 0.2% Ca 0.65 Pr 0.35 F 2.35

Conclusions 1. Me 1–x RE x F 2+x – is a stable crystal lattice with RE content to 50% 2. RE ions aggregation gives a lot of clasters 3. Photon cascade emission is typical for all Me 0.65 Pr 0.35 F 2.35 compound but yield is still very low 4. Is it possible to make the same lattice with F substitution by Cl, Br or I ?