Kazuki Hasebe (Kagawa N.C.T.) Collaborators, Keisuke Totsuka Daniel P. Arovas Xiaoliang Qi Shoucheng Zhang Quantum Antiferromagnets from Fuzzy Super-geometry.

Slides:



Advertisements
Similar presentations
Protected edge modes without symmetry Michael Levin University of Maryland.
Advertisements

THE ISING PHASE IN THE J1-J2 MODEL Valeria Lante and Alberto Parola.
One-dimensional approach to frustrated magnets
Exploring Topological Phases With Quantum Walks $$ NSF, AFOSR MURI, DARPA, ARO Harvard-MIT Takuya Kitagawa, Erez Berg, Mark Rudner Eugene Demler Harvard.
Interacting Fermionic and Bosonic Topological Insulators, possible Connection to Standard Model and Gravitational Anomalies Cenke Xu 许岑珂 University of.
Quantum “disordering” magnetic order in insulators, metals, and superconductors HARVARD Talk online: sachdev.physics.harvard.edu Perimeter Institute, Waterloo,
Quantum critical phenomena Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu Quantum critical phenomena Talk online: sachdev.physics.harvard.edu.
Funded by NSF, Harvard-MIT CUA, AFOSR, DARPA, MURI Takuya Kitagawa Harvard University Mark Rudner Harvard University Erez Berg Harvard University Yutaka.
Quantum anomalous Hall effect (QAHE) and the quantum spin Hall effect (QSHE) Shoucheng Zhang, Stanford University Les Houches, June 2006.
The Persistent Spin Helix Shou-Cheng Zhang, Stanford University Banff, Aug 2006.
Subir Sachdev arXiv: Subir Sachdev arXiv: Loss of Neel order in insulators and superconductors Ribhu Kaul Max Metlitski Cenke Xu.
Takuma N.C.T. Graduate School of Mathematics, Nagoya University, 23 Jul Non-compact Hopf Maps, Quantum Hall Effect, and Twistor Theory Takuma N.C.T.
Fractional topological insulators
The Persistent Spin Helix Shou-Cheng Zhang, Stanford University Les Houches, June 2006.
Spin Liquid Phases ? Houches/06//2006.
Majorana Fermions and Topological Insulators
Houches/06//2006 From Néel ordered AFMs to Quantum Spin Liquids C. Lhuillier Université Paris VI & IUF.
Fermionic Symmetry Protected Topological Phase Induced by Interaction Shangqiang NING First year PHD student Institute For Advanced Study, Tsinghua University.
Field Theory: The Past 25 Years Nathan Seiberg (IAS) The Future of Physics October, 2004 A celebration of 25 Years of.
Symmetries and conservation laws
Topological Insulators and Beyond
Conformal higher-spin fields in (super) hyperspace Dmitri Sorokin INFN, Padova Section Based on arXiv: , with Ioannis Florakis (CERN)
Kaiserslautern, April 2006 Quantum Hall effects - an introduction - AvH workshop, Vilnius, M. Fleischhauer.
Superglasses and the nature of disorder-induced SI transition
Kazuki Hasebe Aug. Supersymmetry in Integrable Systems, Yerevan, Armenia (Kagawa N.C.T.) Based on the works (2005 ~ 2010) with Yusuke Kimura,
Exact Results for perturbative partition functions of theories with SU(2|4) symmetry Shinji Shimasaki (Kyoto University) JHEP1302, 148 (2013) (arXiv: [hep-th])
Germán Sierra IFT-CSIC/UAM, Madrid in collaboration with Ignacio Cirac and Anne Nielsen MPQ,Garching Workshop: ”New quantum states of matter in and out.
Dung-Hai Lee U.C. Berkeley Quantum state that never condenses Condense = develop some kind of order.
Integrable Models and Applications Florence, September 2003 G. Morandi F. Ortolani E. Ercolessi C. Degli Esposti Boschi F. Anfuso S. Pasini P. Pieri.
Effects of Interaction and Disorder in Quantum Hall region of Dirac Fermions in 2D Graphene Donna Sheng (CSUN) In collaboration with: Hao Wang (CSUN),
Introduction to even-denominator FQHE: composite fermions Tejas Deshpande Journal club: 11 November, 2014.
The spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Shuichi Murakami, Naoto Nagaosa (University of Tokyo) Andrei Bernevig, Taylor.
Vector Chiral States in Low- dimensional Quantum Spin Systems Raoul Dillenschneider Department of Physics, University of Augsburg, Germany Jung Hoon Kim.
Quantum computation through many-body correlations of a condensed matter system New trends in QC, Nov. 17 (2010) Akimasa Miyake 1 Perimeter Institute for.
Ady Stern (Weizmann) Papers: Stern & Halperin , PRL
The Helical Luttinger Liquid and the Edge of Quantum Spin Hall Systems
Mott phases, phase transitions, and the role of zero-energy states in graphene Igor Herbut (Simon Fraser University) Collaborators: Bitan Roy (SFU) Vladimir.
Quasi-1D antiferromagnets in a magnetic field a DMRG study Institute of Theoretical Physics University of Lausanne Switzerland G. Fath.
Takuma N.C.T. Supersymmetries and Quantum Symmetries, 29 Jul. ~ 4.Aug Non-compact Hopf Maps, Quantum Hall Effect, and Twistor Theory Takuma N.C.T.
Hidden topological order in one-dimensional Bose Insulators Ehud Altman Department of Condensed Matter Physics The Weizmann Institute of Science With:
Kazuki Hasebe 14 – 19 Dec. Miami 2010, USA (Kagawa N.C.T.) Based on the works (2009,2010) with Daniel P. Arovas, Xiaoliang Qi, Shoucheng Zhang,
The Puzzling Boundaries of Topological Quantum Matter Michael Levin Collaborators: Chien-Hung Lin (University of Chicago) Chenjie Wang (University of Chicago)
Deconfined quantum criticality T. Senthil (MIT) P. Ghaemi,P. Nikolic, M. Levin (MIT) M. Hermele (UCSB) O. Motrunich (KITP), A. Vishwanath (MIT) L. Balents,
Dirac’s inspiration in the search for topological insulators
Introduction to Chalker- Coddington Network Model Jun Ho Son.
Lattice gauge theory treatment of Dirac semimetals at strong coupling Yasufumi Araki 1,2 1 Institute for Materials Research, Tohoku Univ. 2 Frontier Research.
Quantum spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Andrei Bernevig, Congjun Wu (Stanford) Xiaoliang Qi (Tsinghua), Yongshi Wu.
NTNU, April 2013 with collaborators: Salman A. Silotri (NCTU), Chung-Hou Chung (NCTU, NCTS) Sung Po Chao Helical edge states transport through a quantum.
Panjin Kim*, Hosho Katsura, Nandini Trivedi, Jung Hoon Han
QUANTUM PHYSICS BY- AHRAZ, ABHYUDAI AND AKSHAY LECTURE SECTION-5 GROUP NO. 6.
One Dimensional Magnetic Systems Strong Fluctuations in Condensed Matter Magnetism in one dimension Pure systems Doped systems Magnetized states Conclusions.
Cenke Xu 许岑珂 University of California, Santa Barbara Stable 2+1d CFT at the Boundary of a Class of 3+1d Symmetry Protected Topological States.
1 The 5/2 Edge IPAM meeting on Topological Quantum Computing February 26- March 2, 2007 MPA Fisher, with Paul Fendley and Chetan Nayak Motivation: FQHE:
Arnau Riera, Grup QIC, Dept. ECM, UB 16 de maig de 2009 Intoduction to topological order and topologial quantum computation.
From the Hubbard model to high temperature superconductivity HARVARD S. Sachdev Talk online: sachdev.physics.harvard.edu.
Some open questions from this conference/workshop
From fractionalized topological insulators to fractionalized Majoranas
Fractional Berry phase effect and composite particle hole liquid in partial filled LL Yizhi You KITS, 2017.
Topological Insulators
Electrical and thermal transport near quantum phase transitions in condensed matter, and in dyonic black holes Sean Hartnoll (KITP) Pavel.
Gauge structure and effective dynamics in semiconductor energy bands
10 Publications from the project
Tunneling between helical edge states through extended contacts
Phase structure of graphene from Hybrid Monte-Carlo simulations
Unitary Spherical Super-Landau Models Andrey Beylin
Topological Order and its Quantum Phase Transition
SOC Fermi Gas in 1D Optical Lattice —Exotic pairing states and Topological properties 中科院物理研究所 胡海平 Collaborators : Chen Cheng, Yucheng Wang, Hong-Gang.
Jun Nishimura (KEK, SOKENDAI) JLQCD Collaboration:
Geometrical Construction of Supertwistor Theory
Current Status of Exact Supersymmetry on the Lattice
Presentation transcript:

Kazuki Hasebe (Kagawa N.C.T.) Collaborators, Keisuke Totsuka Daniel P. Arovas Xiaoliang Qi Shoucheng Zhang Quantum Antiferromagnets from Fuzzy Super-geometry (Stanford) (YITP) (UCSD)(Stanford) Supersymmetry in Integrable Systems – SIS’12 (27-30, Aug.2012, Yerevan, Armenia) Based on the works, arXiv:120…, PRB 2011, PRB 2009

Topological State of Matter 2 TI, QHE, Theoretical (2005, 2006) and Experimental Discoveries of QSHE (2007)  Local Order parameter (SSB)  Topological Order TSC Topological order is becoming a crucial idea in cond. mat., hopefully will be a fund. concept. How does SUSY affect toplogical state of matter ? and subsequent discoveries of TIs QAFM, QSHE, Main topic of this talk: Order Wen

Physical Similarities QHE: 2D  Gapful bulk excitations  Gapless edge spin motion ``Featureless’’ quantum liquid : No local order parameter QAFM: 1D ``Disordered’’ quantum spin liquid : No local order parameter Spin-singlet bond = Valence bond Quantum Hall Effect Valence Bond Solid State  Gapful bulk excitations  Gapless chiral edge modes ``locked’’ or =

Math. Web Quantum Hall Effect Fuzzy Geometry Valence Bond Solid State Schwinger formalism Spin-coherent state Hopf map

Simplest Concrete Example Fuzzy Sphere or = Haldane’s sphereLocal spin of VBS state Monopole charge : Spin magnitude : Radius :

Fuzzy Sphere Fuzzy and Haldane’s spheres Schwinger formalism Berezin (75),Hoppe (82), Madore (92) 6 Haldane’s Sphere Hopf map : monopole gauge field

One-particle Basis LLL basis Haldane (83) Wu & Yang (76) States on a fuzzy sphere Fuzzy Sphere Haldane’s sphere

Translation LLL Fuzzy sphere Simply, the correspondence comes from the Hopf map: The Schwinger boson operator and its coherent state. Schwiger operator Hopf spinor

Laughlin-Haldane wavefunction Haldane (83) SU(2) singlet Stereographic projection : index of electron

Simplest Concrete Example Fuzzy Sphere or = Haldane’s sphereLocal spin of VBS state Monopole charge : Spin magnitude : Radius :

Translation to internal spin space SU(2) spin states 1/2 -1/2 1/2 -1/2 Bloch sphere LLL states Haldane’s sphere Internal spaceExternal space Cyclotron motion of electron Precession of spin Interpret as spin coherent state

Correspondence Laughlin-Haldane wavefunctionValence bond solid state Lattice coordination numberTotal particle number Filling factor Spin magnitude Monopole charge Two-site VB number Arovas, Auerbach, Haldane (88) Affleck, Kennedy, Lieb, Tasaki (87,88) Particle index Lattice-site index

Examples of VBS states (I) VBS chain Spin-singlet bond = Valence bond ``locked’’ or =

Examples of VBS states (II) Honeycomb-latticeSquare-lattice

Particular Feature of VBS states  VBS models are ``solvable’’ in any high dimension. (Not possible for AFM Heisenberg model) Gapful (Haldane gap) Non-local Disordered spin liquid Exponential decay of spin-spin correlation  Ground-state  Gap (bulk) Gapless SSBNo SSB  Order parameter Local Neel stateValence bond solid state 15

Hidden Order VBS chain den Nijs, Rommelse (89), Tasaki (91) Classical Antiferromagnets Neel (local) Order Hidden (non-local) Order No sequence such as

Generalized Relations Quantum Hall Effect Fuzzy Geometry Valence Bond Solid State 2D-QHE SO(5)- q-deformed- SO(2n+1)- Mathematics of higher D. fuzzy geometry and QHE can be applied to construct various VBS models. 4D- 2n- q-deformed- CPn- Fuzzy four- Fuzzy two-sphere Fuzzy CPn Fuzzy 2n- q-deformed SU(n+1)- SU(2)-VBS

Related References of Higher D. QHE D QHE 4D Extension of QHE : From S2 to S4 Even Higher Dimensions: CPn, fuzzy sphere, …. QHE on supersphere and superplane Landau models on supermanifolds Zhang, Hu (01) Karabali, Nair (02-06), Bernevig et al. (03), Bellucci, Casteill, Nersessian(03) Kimura, KH (04), ….. Kimura, KH (04-09) Ivanov, Mezincescu,Townsend et al. (03-09), 2001 Bellucci, Beylin, Krivonos, Nersessian, Orazi (05)... Super manifolds …… Non-compact manifolds Hyperboloids, …. Hasebe (10)Jellal (05-07) Laughlin, Haldane

Related Refs. of Higher Sym. VBS States Valene bond solid models Sp(N) Tu, Zhang, Xiang (08) Arovas, Auerbach, Haldane (88) Higher- Bosonic symmetry UOSp(1|2), UOSp(2|2), UOSp(1|4) … Arovas, KH, Qi, Zhang (09) Relations to QHE SU(N) Affleck, Kennedy, Lieb, Tasaki (AKLT) SO(N) Greiter, Rachel, Schuricht (07), Greiter, Rachel (07), Arovas (08) Schuricht, Rachel (08) Super- symmetry 200X Tu, Zhang, Xiang, Liu, Ng (09) Totsuka, KH (11,12) q-SU(2)Klumper, Schadschneider, Zittartz (91,92) Totsuka, Suzuki (94)Motegi, Arita (10)

Takuma N.C.T. Supersymmetric Valence Bond Solid Model 20

Fuzzy Supersphere Grosse & Reiter (98) Balachandran et al. (02,05) Fuzzy Super-Algebra Supersphere oddGrassmann even (UOSp(1|2) algebra) Super-Schwinger operator

Intuitive Pic. of Fuzzy Supersphere 1 1/2 0 -1/2

Haldane’s Supersphere One-particle Hamiltonian UOSp(1|2) covariant angular momentum Kimura & KH, KH (05) SUSY Laughlin-Haldane wavefunction Super monopole LLL basis : super-coherent state

Susy Valence Bond Solid States 24 Arovas, KH, Qi, Zhang (09) Hole-doping parameter Spin+ Charge Supersymmetry Manifest UOSp(1|2) (super)symmetry At r=0, the original VBS state is reproduced.  Math.  Physics ‘’Cooper-pair’’ doped VBS spin-sector : QAFM charge-sector : SC Exact many-body state of interaction Hamiltonian hole

Exact calculations of physical quantities 25 SC parameter spin-correlation length

Two Orders of SVBS chain Insulator Superconductor Insulator Spin-sector Quantum-ordered anti-ferromagnet Charge-sector Hole doping Order Superconducting Sector Topological order 26

Takuma N.C.T. Entanglement of SVBS chain 27

Hidden Order in the SVBS State +1/2-1/ /2 Totsuka & KH (11) 28 SVBS shows a generalized hidden order. sS Bulk = 1 : S =1+1/2

E.S. as the Hall mark 29 Li & Haldane proposal (06) What is the ``order parameter’’ for topological order ? B A Entanglement spectrum (E.S.) Robustness of degeneracy of E.S. under perturbation Hall mark of the topological order Schmidt coeffients Spectrum of Schmidt coeffients 

Behaviors of Schmidt coefficients The double degeneracy is robust under ‘’any’’ perturbations (if a discete sym. is respected) Schmidt coeff.  2+15 Schmidt coeff.  3+2 sS Bulk = 1 sS Bulk = 2 Totsuka & KH (12)

Origin of the double degeneracy 31 A B ``edge’’ Double deg. (robust) Non-deg. Triple deg. (fragile) sS Bulk = 2 sS Edge = 1/2 sS Bulk = 1 sS Edge = 1 S Edge = 0 S Edge = 1/2 S Edge = 1 S Edge = 1/2

Understanding the degeneracy via edge spins In the SVBS state, half-integer spin edge states always exist (this is not true in the original VBS) and such half-integer edge spins bring robust double deg. to E.S. Edge spin 1/2 Bulk (super)spin : general S Bulk-(super)spin S=2 1 Edge spin S/2 S/2-1/2 SUSY brings stability to topological phase. SUSY 32

Summary Edge spin : integer half-integer SUSY 33  SVBS is a hole-pair doped VBS, possessing all nice properties of the original VBS model.  SVBS exhibits various physical properties, depending on the amount of hole-doping. 1. Math. of fuzzy geometry and QHE can be applied to construct novel QAFM. First realization of susy topological phase in the context of noval QAFM! 2. SUSY plays a cucial role in the stability of topological phase.

Symmetry protected topological order 34 TRS  Odd-bulk S QAFM spin Z2 * Z2 Unless all of the discrete symmetries are broken Qualitative difference between even-bulk S and odd- bulk S VBSs : Inversion  Even-bulk S QAFM spin : SU(2) S bulk =2n-1 S edge =S bulk /2=n-1/2 2S edge +1=2n S bulk =2n S edge =S bulk /2=n 2S edge +1=2n+1 Odd deg. (fragile) Double deg. of even deg. (robust) Hallmark of topological order : Deg. of E.S. is robust under perturbation. Pollmann et al. (09,10)