Radio astronomical probes of Cosmic Reionization and the 1 st luminous objects Chris Carilli April 3, 2007 MIT  Brief introduction to cosmic reionization.

Slides:



Advertisements
Similar presentations
Probing the End of Reionization with High-redshift Quasars Xiaohui Fan University of Arizona Mar 18, 2005, Shanghai Collaborators: Becker, Gunn, Lupton,
Advertisements

Cosmic reionization and the history of the neutral intergalactic medium MAGPOP Summer School, Kloster Seeon Chris Carilli, NRAO, August 10, 2007  Introduction:
The Highest-Redshift Quasars and the End of Cosmic Dark Ages Xiaohui Fan Collaborators: Strauss,Schneider,Richards, Hennawi,Gunn,Becker,White,Rix,Pentericci,
ESO Recent Results on Reionization Chris Carilli (NRAO) Dakota/Berkeley,August 2011 CO intensity mapping during reionization: signal in 3 easy steps Recent.
End of Cosmic Dark Ages: Observational Probes of Reionization History Xiaohui Fan University of Arizona New Views Conference, Dec 12, 2005 Collaborators:
ESO Recent Results on Reionization Chris Carilli (NRAO) LANL Cosmology School, July 2011 Review: constraints on IGM during reionization  CMB large scale.
Molecular gas in the z~6 quasar host galaxies Ran Wang National Radio Astronomy Observatory Steward Observatory, University of Atrizona Collaborators:
HI 21cm Signal from Cosmic Reionization IAU 2006, Long Wavelength Astrophysics Chris Carilli (NRAO) Ionized Neutral Reionized.
Cosmic reionization: The last frontier in observational cosmology Chris Carilli (NRAO) Notre Dame, March 31, 2010  Brief introduction to cosmic reionization.
A hot topic: the 21cm line II Benedetta Ciardi MPA.
Star formation at high redshift (2 < z < 7) Methods for deriving star formation rates UV continuum = ionizing photons (dust obscuration?) Ly  = ionizing.
Cosmology with the 21 cm Transition Steve Furlanetto Yale University September 25, 2006 Steve Furlanetto Yale University September 25, 2006.
Cosmic reionization: The last frontier in observational cosmology Chris Carilli (NRAO) Summer Student Lecture July 2010  Brief introduction to cosmic.
Probing the neutral intergalactic medium during cosmic reionization using the 21cm line of hydrogen KIAA-PKU Summer School, Beijing, China Chris Carilli,
Radio astronomical probes of Cosmic Reionization and the 1 st luminous objects Chris Carilli, NRL, April 2008  Brief introduction to cosmic reionization.
History of IGM bench-mark in cosmic structure formation indicating the first luminous structures Epoch of Reionization (EoR)
130 cMpc ~ 1 o z~ = 7.3 Lidz et al ‘Inverse’ views of evolution of large scale structure during reionization Neutral intergalactic medium via HI.
130 cMpc ~ 1 o z = 7.3 Lidz et al ‘Inverse’ views of evolution of large scale structure during reionization Neutral intergalactic medium via HI 21cm.
Cosmic Reionization Chris Carilli (M/NRAO) Vatican Summer School June 2014 I. Introduction: Cosmic Reionization  Concept  Cool gas in z > 6 galaxies:
SKA in context z=8 Fields of View 1deg^2 With Full Sensitivity at subarcsec resolution.
ALMA DOES GALAXIES! A User’s Perspective on Early Science Jean Turner UCLA.
Epoch of Reionization last phase of cosmic evolution to be explored bench-mark in cosmic structure formation indicating the first luminous structures Cosmic.
Cosmic reionization and the history of the neutral intergalactic medium LANL Chris Carilli May 23, 2007  Current constraints on the IGM neutral fraction.
Radio observations of massive galaxy and black hole formation in the early Universe Chris Carilli (NRAO) MPIA, Heidelberg, Aug 7, 2009  Introductory remarks.
High Frequency (> 10GHz) Thermal science at centimeter wavelengths, and more! Chicago III, Sept. 15, 2007 Washington DC Chris Carilli (NRAO)
Ionized Neutral Reionized Update: HI 21cm cosmic reionization experiments Chris Carilli (NRAO) MPIA July 2008 Last phase of cosmic evolution to be explored.
Studying the gas, dust, and star formation in the first galaxies at cm and mm wavelengths Chris Carilli, KIAA-PKU reionization workshop, July 2008  QSO.
1 National Radio Astronomy Observatory – Town Hall AAS 211 th Meeting – Austin, Texas Science Synergies with NRAO Telescopes Chris Carill NRAO.
SMA [CII] 158um 334GHz, 20hrs BRI z=4.7 HyLIRG (10 13 L o ) pair: Quasar host Obscured SMG SFR ~ 10 3 ; M H2 ~ Iono ea 2007 Salome ea
SMA [CII] 158um 334GHz, 20hrs BRI z=4.7 Quasar-SMG pair Both HyLIRG Both detected in CO Iono ea 2007 Omont ea ”4” HST 814 Hu ea 96.
ESO ALMA, EVLA, and the Origin of Galaxies (Dense Gas History of the Universe) Chris Carilli (NRAO) Bonn, Germany, September 2010 The power of radio astronomy:
Probing the neutral intergalactic medium during cosmic reionization using the 21cm line of hydrogen KIAA-PKU Summer School, Beijing, China Chris Carilli,
Future Science at cm wavelengths, Chicago II, Aug 2006, C.Carilli Major efforts: EVLA I+II, ATA… Three year process: Quantified ‘experiments’ for future.
Molecular Gas (Excitation) at High Redshift Fabian Walter Max Planck Institute for Astronomy Heidelberg Fabian Walter Max Planck Institute for Astronomy.
History of IGM bench-mark in cosmic structure formation indicating the first luminous structures Epoch of Reionization (EoR) C.Carilli (NRAO) Cool Univ.
Massive galaxy (and black hole) formation in the early Universe Chris Carilli (NRAO) Berkeley, February 10, 2009  Intro: telescopes, techniques, massive.
ALMA: Imaging the cold Universe Great observatories May 2006 C. Carilli (NRAO) National Research Council Canada.
Radio astronomical probes of the 1 st galaxies Chris Carilli, Aspen, February 2008  Current State-of-the-Art: gas, dust, star formation in QSO host galaxies.
Probing the First Star Formation by 21cm line Kazuyuki Omukai (Kyoto U.)
ESO Radio observations of the formation of the first galaxies and supermassive Black Holes Chris Carilli (NRAO) LANL Cosmology School, July 2010 Concepts.
C.Carilli, AUI Board October 2006 ISAC-run three year process: Quantified ‘experiments’ for future large area cm telescopes 50 chapters, 90 authors, 25%
ESO Radio observations of the formation of the first galaxies and supermassive black holes Chris Carilli (NRAO) Keck Institute, August 2010 Current State-of-Art:
Probing the dark ages with a lunar radio telescope Chris Carilli, Feb 2008 Dark Ages 15 < z < 200 Reionization 6 < z < 15 last phase of cosmic evolution.
Big Bang f(HI) ~ 0 f(HI) ~ 1 f(HI) ~ History of Baryons (mostly hydrogen) Redshift Recombination Reionization z = 1000 (0.4Myr) z = 0 (13.6Gyr) z.
Santa Fe Chris Carilli July 17, 2007
History of IGM bench-mark in cosmic structure formation indicating the first luminous structures Epoch of Reionization (EoR) C.Carilli (NRAO) CfA Sept.
Cosmic ‘Background’Radiation Franceschini The Gunn Peterson Effect Fan et al 2003 z=6.3 z=5.80 z=5.82 z=5.99 z=6.28 Cosmic reionization at z =6.3.
The Dark Age and Cosmology Xuelei Chen ( 陈学雷 ) National Astronomical Observarories of China The 2nd Sino-French Workshop on the Dark Universe, Aug 31st.
Warm Dust in the Most Distant Quasars Ran Wang Department of Astronomy, Peking University, China.
The M BH -  star relation at the highest redshifts Fabian Walter (MPIA)
What is EVLA? Giant steps to the SKA-high ParameterVLAEVLAFactor Point Source Sensitivity (1- , 12 hr.)10  Jy1  Jy 10 Maximum BW in each polarization0.1.
ESO Radio observations of the formation of the first galaxies and supermassive Black Holes Chris Carilli (NRAO) Notre Dame Astrophysics March 30, 2010.
ESO The other side of galaxy formation: radio line and continuum ‘Great Surveys’ Santa Fe November 2008 Chris Carilli NRAO.
High Redshift Galaxies/Galaxy Surveys ALMA Community Day April 18, 2011 Neal A. Miller University of Maryland.
History of IGM bench-mark in cosmic structure formation indicating the first luminous structures Epoch of Reionization (EoR) C.Carilli (NRAO) NNIW Dec.
Radio observations of massive galaxy and black hole formation in the early Universe Chris Carilli (NRAO) MPE, Garching, July 16, 2009  Introductory remarks.
Dust, cool gas, and star formation in z>6 SMBH host galaxies
ALMA studies of the first galaxies
First galaxies: cm/mm observations Carilli (NRAO)
SKA KSP: probing cosmic reionization and the first galaxies
1st galaxies: cm/mm observations – fuel for galaxy formation
Giant Clouds and Star Clusters in the Antennae
What is EVLA? Build on existing infrastructure, replace all electronics (correlator, Rx, IF, M/C) => multiply ten-fold the VLA’s observational capabilities.
HI 21cm Tomography of IGM: freq ~ 100 to 200 MHz
C.Carilli (NRAO) Heidelberg 05
Dense gas history of the Universe  Tracing the fuel for galaxy formation over cosmic time SF Law SFR Millennium Simulations, Obreschkow & Rawlings 2009;
Evolution of radio telescopes (Braun 1996)
Chris Carilli (NRAO) AAS06 NRAO 50th.
Observing Molecules in the EoR
ALMA: Resolving (optically) obscured galaxy formation
Presentation transcript:

Radio astronomical probes of Cosmic Reionization and the 1 st luminous objects Chris Carilli April 3, 2007 MIT  Brief introduction to cosmic reionization  Objects within reionization – recent observations of molecular gas, dust, and star formation, in the host galaxies of the most distant QSOs, and more…  Neutral Intergalactic Medium (IGM) – HI 21cm telescopes, signals, and challenges USA – Carilli, Wang, Fan, Strauss, Gnedin Euro – Walter, Bertoldi, Cox, Menten, Omont

Ionized Neutral Reionized

Chris Carilli (NRAO) Berlin June 29, 2005 WMAP – structure from the big bang

Hubble Space Telescope Realm of the Galaxies

Dark Ages Twilight Zone Epoch of Reionization Last phase of cosmic evolution to be tested Bench-mark in cosmic structure formation indicating the first luminous structures

Constraint I: Gunn-Peterson Effect Fan et al 2006 End of reionization?  f(HI) <1e-4 at z= 5.7  f(HI) >1e-3 at z= 6.3

TT TE EE Constraint II: CMB large scale polarization -- Thompson scattering during reionization   Scattered CMB quad. => polarized   Horizon scale => 10’s deg    e = 0.09+/-0.03 z reion = 11+/3 Page + 06; Spergel 06

 Current observations => z reion = 6 to 11 (+/-3)  Not ‘event’ but complex process, large variance time/space (eg. Shull & Venkatesan 2006) Fan, Carilli, Keating ARAA 06 8Mpc Gnedin03

Limitations of measurements CMB polarization  e = integral measure through universe => allows many reionization scenarios Still a 3  result (now in EE vs. TE before) Gunn-Peterson effect  Lya t o f(HI) conversion requires ‘clumping factor’ (cf. Becker etal 06)  Lya >>1 for f(HI)>0.001 => low f  diagnostic GP => Reionization occurs in ‘twilight zone’, opaque for obs <0.9  m

 IRAM 30m + MAMBO: sub-mJy sens at 250 GHz + wide fields  dust  IRAM PdBI: sub-mJy sens at 90 and 230 GHz +arcsec resol.  mol. Gas, C+  VLA: uJy sens at 1.4 GHz  star formation  VLA: < 0.1 mJy sens at GHz + 0.2” resol.  mol. gas (low order) Radio observations of z ~ 6 QSO host galaxies

Magic of (sub)mm: distance independent method of studying objects in universe from z=0.8 to 10 L _FIR ~ 4e12 x S 250 (mJy) L _sun SFR ~ 1e3 x S 250 M _sun /yr FIR = 1.6e12 L _sun obs = 250 GHz

Why QSOs?  Spectroscopic redshifts  Extreme (massive) systems M B L bol > 1e14 L o M BH > 1e9 M o  Rapidly increasing samples: z>4: > 1000 known z>5: 80 z>6: 15 Fan 05

QSO host galaxies – M BH -- M bulge relation  Most (all?) low z spheroidal galaxies have SMBH: M BH =0.002 M bulge  ‘Causal connection between SMBH and spheroidal galaxy formation’  Luminous high z QSOs have massive host galaxies (1e12 M o ) Magorrian, Tremaine, Gebhardt, Merritt…

1/3 of luminous QSOs have S 250 > 2 mJy, independent of redshift from z=1.5 to 6.4 L FIR =1e13 L o = 0.1 x L bol : Dust heating by starburst or AGN? MAMBO surveys of z>2 QSOs 1e13 L o 2.4mJy J

Highest redshift quasar known (t univ = 0.87Gyr) L bol = 1e14 L o Black hole: ~3 x 10 9 M o ( Willot etal. ) Gunn Peterson trough (Fan etal.) Pushing into reionization: QSO at z=6.4

z=6.42: Dust detection Dust formation? AGB Winds ≥ 1.4e9yr t univ = 0.87e9yr => dust formation associated with high mass star formation: Silicate gains (vs. eg. Graphite) formed in core collapse SNe (Maiolino 07)? S 250 = 5.0 +/- 0.6 mJy L FIR = 1.2e13 L o M dust =7e8 M o 3’ MAMBO 250 GHz

z=6.42: Gas detection Off channels Rms=60uJy GHz CO 3-2 FWHM = 305 km/s z = / M(H 2 ) ~ 2e10 M o M gas /M dust ~ 30 (~ starburst galaxies) C, O production (~1e8 M o ) => Star formation started early (z > 8)? VLA IRAM VLA

 T k ~ 100K n H2 ~ 10 5 cm -3 => Typical of starburst galaxy nucleus CO Excitation

J : VLA imaging of CO3-2  Separation = 0.3” = 1.7 kpc  T B = 35K => Typical of starburst nuclei  Merging galaxies? rms=50uJy at 47GHz CO extended to NW by 1” (=5.5 kpc) tidal(?) feature 1” 0.4”res 0.15” res

Testing M BH - M bulge relation at high z CO FWHM + size => M dyn ~ 2e10/(sin  )^2 M o M gas ~ 2e10 M o M bulge ~1e12 M o (predicted)

Radio-IR SED T D = 50 K  FIR excess = 50K dust  Radio-FIR SED follows star forming galaxy  SFR ~ 3000 M o /yr Radio-FIR correlation Elvis SED

[CII] 158um PDR cooling line detected at z=6.4 30m 256GHz Maiolino etal PdBI  L [CII] = 4x10 9 L o  L [CII] /L FIR = 3x10 -4 ~ ULIRG  SFR ~ 6.5e-6 L [CII] ~ 3000 M o /yr  Size ~ 0.5” (~ 2.5kpc)  Enriched ISM on kpc scales 0.3”

SDSS J z=5.8  FIR-luminous QSO host + ‘submm galaxy’ companion  separation = 87kpc  Biased massive galaxy formation at early times? 10” SharkII CSO 850GHz rms= 6mJy L FIR ~ 1e13 L o SFR ~ 2500 M o /yr Radio-FIR correlation Chance projection < 1%

FIR-luminous z~6 QSOs: SFR ~ few e3 M o /yr => form large spheroid in dynamical timescale ~ 1e8 yr Coeval formation of massive galaxy + SMBH within 1 Gyr of big bang? Low z IR QSOs: major mergers AGN+starburst? Low z Optical QSOs: early- type hosts Z~6

Building a giant elliptical galaxy + SMBH by z=6.5  Multi-scale simulation isolating most massive halo in 3 Gpc^3 (co-mov)  Stellar mass ~ 1e12 M o forms in series (7) of major, gas rich mergers from z~14, with SFR ~ 1e3 - 1e4 M o /yr  SMBH of ~ 2e9 M o forms via Eddington-limited accretion + mergers  BH feedback regulates star formation  ISM abundance quickly evolves to solar  Evolves into giant elliptical galaxy in massive cluster (3e15 M o ) by z= M stars =1e12M o M BH = 2e9M o Li, Hernquist, Roberston..

Panchromatic view of galaxy formation: ALMA reveals the cool universe: dust and gas -- the fundamental fuel for star formation cm: star formation, AGN (sub)mm dust, molecular gas Near-IR: stars, ionized gas, AGN The ALMA revolution -- observing normal galaxies into cosmic reionization L FIR = 1e11 L o

Cosmic Stromgren Sphere Accurate redshift from CO: z=6.419+/0.001 Ly a, high ioniz Lines: inaccurate redshifts (  z > 0.03) Proximity effect: photons leaking from 6.32<z<6.419 z=6.32 ‘time bounded’ Stromgren sphere: R = 4.7 Mpc t qso = 1e5 R^3 f(HI)~ 1e7yrs or f(HI) ~ 1 (t qso /1e7 yr) White et al. 2003

Loeb & Rybicki 2000

CSS: Constraints on neutral fraction at z~6?  Nine z~6 QSOs with CO or MgII redshifts: = 4.4 Mpc (Wyithe et al. 05; Fan et al. 06; Kurk et al. 07)  GP => f(HI) >  If f(HI) ~ 0.001, then ~ 1e4 yrs – implausibly short given QSO fiducial lifetimes (~1e7 years)?  Probability arguments suggest: f(HI) > 0.1 Wyithe et al =t qso /4e7 yrs 90% probability x(HI) > curve P(>x _HI )

 CSS => rapid rise in f(HI) around z ~ 6 to 7  Many difficulties (Lidz + 07, Maselli + 07) * f(HI)  R^-3 * pre-QSO reionization => clumpy IGM/ragged edges Cosmic ‘phase transition’?

Studying the pristine neutral IGM using redshifted HI 21cm observations (100 – 200 MHz) Large scale structure  cosmic density,   neutral fraction, f(HI)  Temp: T K, T CMB, T spin 1e13 M o 1e9 M o

Multiple experiments under-way: ‘pathfinders’ ~1e4 m^2 MWA (MIT/CfA/ANU) LOFAR (NL) 21CMA (China) SKA 1e6 m^2

Signal I: Global (‘all sky’) reionization signature in low frequency HI spectra Ly  coupling: T spin =T K < T CMB IGM heating: T spin = T K > T CMB Gnedin & Shaver 03 All sky => Single dipole experiment with (very) carefully controlled systematics (signal <1e-4 sky), eg. EDGES (Rogers & Bowman 07) 140MHz

Signal II: HI 21cm Tomography of IGM Zaldarriaga z=   T B (2’) = 10’s mK  SKA rms(100hr) = 4mK  LOFAR rms (1000hr) = 80mK

Signal III: 3D Power spectrum analysis SKA LOFAR McQuinn + 06  only  + f(HI)

N(HI) = 1e13 – 1e15 cm^-2, f(HI/HII) = 1e e-6 => Before reionization N(HI) =1e18 – 1e21 cm^-2 Signal IV: Cosmic Web after reionization Ly alpha forest at z=3.6 (  < 10) Womble 96

z=12z=8 19mJy 130MHz radio G-P (  =1%) 21 Forest (10%) mini-halos (10%) primordial disks (100%) Signal IV: Cosmic web before reionization: HI 21Forest Perhaps easiest to detect (use long baselines) Requires radio sources: expect 0.05 to 0.5 deg^-2 at z> 6 with S 151 > 6 mJy? 159MHz

Signal V: Cosmic Stromgren spheres around z > 6 QSOs 0.5 mJy  LOFAR ‘observation’: 20xf(HI)mK, 15’,1000km/s => 0.5 x f(HI) mJy  Pathfinders: Set first hard limits on f(HI) at end of cosmic reionization  Easily rule-out cold IGM (T _s < T _cmb ): signal = 360 mK Wyithe et al Mpc

Challenge I: Low frequency foreground – hot, confused sky Eberg 408 MHz Image (Haslam ) Coldest regions: T ~ 100  z)^-2.6 K Highly ‘confused’: 1 source/deg^2 with S 140 > 1 Jy

Solution: spectral decomposition (eg. Morales, Gnedin…)  Foreground = power-law or gently curving over ~ 100 MHz  Signal = fine scale structure on scales ~ few MHz 10’ FoV; SKA 1000hrs Xcorrelation/Power spectral analysis in 3D – different symmetries in freq space Freq Signal Foreground Signal/Sky ~ 2e-5

 TIDs – ‘fuzz-out’ sources  ‘Isoplanatic patch’ = few deg = few km  Phase variation proportional to ^2 Solution: Wide field ‘rubber screen’ phase self- calibration Challenge II: Ionospheric phase errors – varying e- content Virgo A VLA 74 MHz Lane ’

Challenge III: Interference 100 MHz z= MHz z=6 Solutions -- RFI Mitigation (Ellingson06)  Digital filtering  Beam nulling  Real-time ‘reference beam’  LOCATION!

VLA-VHF: 180 – 200 MHz Prime focus X-dipole Greenhill, Blundell (SAO); Carilli, Perley (NRAO) Leverage: existing telescopes, IF, correlator, operations  $110K D+D/construction (CfA)  First light: Feb 16, 05  Four element interferometry: May 05  First limits: Winter 06/07

Project abandoned: Digital TV KNMD Ch 9 150W at 100km

RFI mitigation: location, location location… 100 people km^-2 1 km^ km^-2 (Briggs 2005)

Destination: Moon! RAE  No interference  No ionosphere (?)

GMRT 230 MHz – HI 21cm abs toward highest z radio galaxy and QSO (z~5.2) rms(20km/s) = 5 mJy 229Mhz 0.5 Jy RFI = 20 kiloJy ! 232MHz 30mJy rms(40km/s) = 3mJy N(HI) ~ 2e20T S cm^-2 ?

Radio astronomy probing cosmic reionization ‘Twilight zone’: obs of 1 st luminous sources limited to near-IR to radio wavelengths Currently -- pathological systems (‘HLIRGs’): coeval formation SMBH+giant ellipt. in spectacular starburst at t univ <1Gyr EVLA, ALMA x sensitivity is critical to study normal galaxies Low freq pathfinders: HI 21cm signatures of neutral IGM SKA: imaging of IGM

END

Focus: Reionization (power spec,CSS,abs) Very wide field: 2x2 tile(?) Correlator: FPGA-based from Berkeley wireless lab Staged engineering approach: GB05 8 stations  Boolardy07 16 stations

PAPER: First images/spectra Cygnus A 1e4Jy Cas A 1e4Jy 3C Jy 3C Jy 140MHz 180MHz CygA 1e4Jy

ALMA first fringes (Emerson +) ATF, Socorro NM Saturn 90 GHz March 2, 2007 Using all ALMA electronics

ALMA Status Antennas, receivers, correlator all fully prototyped and evaluated: best mm receivers and antennas ever! Site construction well under way: Observation Support Facility and Array Operations Site North American ALMA Science Center (C’Ville): gearing up for science commissioning and operations (successful international operations review Feb 2007) Timeline: Q1 2007: First fringes at ATF (Socorro) Q1 2009: Three antenna array at AOS Q3 2010: Start early science (16 antennas) Q4 2012: Full operations

Signal VI: pre-reionization HI signal eg. Baryon Oscillations (Barkana & Loeb) Very difficult to detect !  z=50 => = 30 MHz  Signal: 30 arcmin, 50 mk => S _30MHz = 0.1 mJy  SKA sens in 1000hrs: T _fg = 20000K => rms = 0.2 mJy z=50 z=150

HCN emission: Dense gas directly associated with star formation n(H 2 ) > 1e5 cm^-3 (vs. CO: n(H 2 ) > 1e3 cm^-3) z=2.58 Solomon et al index=1 70 uJy J z>2

Stratta, Maiolino et al. 2006: extinction toward z=6.2 QSO and 6.3 GRB => Silicate + amorphous Carbon dust grains (vs. eg. Graphite) formed in core collapse SNe?

Sources responsible for reionization  Luminous AGN: No  Star forming galaxies: maybe -- dwarf galaxies (Bowens05; Yan04)?  mini-QSOs -- unlikely (soft Xray BG; Dijkstra04)  Decaying sterile neutrinos -- unlikely (various BGs; Mapelli05)  Pop III stars z>10? midIR BG (Kashlinsky05), but t recomb < t univ at z~10 GP => Reionization occurs in ‘twilight zone’, opaque for obs <0.9  m Needed for reion.

[CII] -- the good and the bad  [CII]/FIR decreases rapidly with L FIR (lower heating efficiency due to charged dust grains?) => luminous starbursts are still difficult to detect in C+  Normal star forming galaxies (eg. LAEs) are not much harder to detect!

J1148 z=6.4: gas, dust, star formation FIR excess ~ 1e13L o, M d ~7e8M o Giant molecular gas cloud ~ 2e10M o, size ~ 5.5kpc Star formation rate ~ 3000 M o /yr 1. Radio-FIR SED 2. Gas reservoir + Dust/Gas 3. CO excitation, T B 4. [CII]/FIR ~ ULIRG Merging galaxy: M dyn (r<2.5kpc) ~ 5e10 M o Early enrichment of heavy elements and dust => star formation started t univ < 0.5 Gyr Dust formation in massive stars? Break-down of M-  at high z? ‘Smoking gun’ for coeval formation of massive galaxy + SMBH within 870 Myr of big bang? Consistent with ‘downsizing’ in massive galaxy and SMBH formation (Heckman etal. 2004; Cowie et al. 1996)

L FIR vs L’(CO)  M(H_2) = X * L’(CO), X=4 (Milkyway), X=0.8 (ULIRGs)  Telescope time: t(dust) = 1hr, t(CO) = 10hr Index=1.7 Index=1 1e11 M o z>2 J z= M o /yr