Electromagnetic Oscillations and Alternating Current Chapter 33.

Slides:



Advertisements
Similar presentations
Alternating Current Circuits Chapter 33 Note: This topic requires you to understand and manipulate sinusoidal quantities which include phase differences.
Advertisements

Electromagnetic Oscillations and Alternating Current
We have been using voltage sources that send out a current in a single direction called direct current (dc). Current does not have to flow continuously.
AC Circuits Physics 102 Professor Lee Carkner Lecture 24.
Induction1 Time Varying Circuits 2008 Induction2 A look into the future We have one more week after today (+ one day) We have one more week after today.
Induction1 Time Varying Circuits 2009 Induction 2 The Final Exam Approacheth 8-10 Problems similar to Web-Assignments 8-10 Problems similar to Web-Assignments.
Alternating Current Circuits
Physics 122B Electricity and Magnetism
Fig 33-CO, p Ch 33 Alternating Current Circuits 33.1 AC Sources and Phasors v = V max sint  = 2/T = 2f tt V max v = V max sint Phasor.
AC Circuits Physics 102 Professor Lee Carkner Lecture 23.
AC Circuits PH 203 Professor Lee Carkner Lecture 23.
Alternating Current Circuits
Copyright © 2009 Pearson Education, Inc. Lecture 10 – AC Circuits.
3/31/2020USF Physics 1011 Physics 101 AC Circuits.
chapter 33 Alternating Current Circuits
© 2007 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
1 My Chapter 21 Lecture Outline. 2 Chapter 21: Alternating Currents Sinusoidal Voltages and Currents Capacitors, Resistors, and Inductors in AC Circuits.
Fall 2008 Physics 121 Practice Problem Solutions 13 Electromagnetic Oscillations AC Circuits Contents: 121P13 - 2P, 3P, 9P, 33P, 34P, 36P, 49P, 51P, 60P,
Fall 2008Physics 231Lecture 10-1 Chapter 30 Inductance.
28. Alternating Current Circuits
Chapter 22 Alternating-Current Circuits and Machines.
Electromagnetic Oscillations and Alternating Current
Ch – 35 AC Circuits.
Rank the magnitude of current induced into a loop by a time-dependent current in a straight wire. I(t) A B C D E tI(t)I induced.
ARRDEKTA INSTITUTE OF TECHNOLOGY GUIDED BY GUIDED BY Prof. R.H.Chaudhary Prof. R.H.Chaudhary Asst.prof in electrical Asst.prof in electrical Department.
Chapter 35.
Chapter 31 Electromagnetic Oscillations and Alternating Current Key contents LC oscillations, RLC circuits AC circuits (reactance, impedance, the power.
Copyright © 2010 Pearson Education, Inc. Lecture Outline Chapter 24 Physics, 4 th Edition James S. Walker.
Electromagnetic Oscillations and Alternating Current
Chapter 33 Alternating Current Circuits CHAPTER OUTLINE 33.1 AC Sources 33.2 Resistors in an AC Circuit 33.3 Inductors in an AC Circuit 33.4 Capacitors.
Alternating Current Circuits Chapter 33 (continued)
1 Chapter An alternator 3 The Great Divide: 60 Hz vs 50 Hz  is an angular frequency.  =2  f where f is the frequency in Hertz (Hz) In the US.
Copyright © 2009 Pearson Education, Inc. Chapter 30 Inductance, Electromagnetic Oscillations, and AC Circuits.
Alternating Current Circuits
Chapter 29 Electromagnetic Induction and Faraday’s Law
Thursday, Dec. 1, 2011PHYS , Fall 2011 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #23 Thursday, Dec. 1, 2011 Dr. Jaehoon Yu LR circuit LC.
PHY 2049: Physics II Tutoring Center is open in room NPB 1215, M-F 12:00AM -4:00PM. It is free. The following hitt numbers need to register. Please do.
Chapter 24 Alternating-Current Circuits. Units of Chapter 24 Alternating Voltages and Currents Capacitors in AC Circuits RC Circuits Inductors in AC Circuits.
Class 34 Today we will: learn about inductors and inductance
1 Alternating Current Circuits Chapter Inductance CapacitorResistor.
Induction - Spring Time Varying Circuits April 10, 2006.
CHAPTER 33) ALTERNATING-CURRENT CIRCUITS 33.1 : AC SOURCES AND PHASORS An ac circuit consists of circuit elements and a generator that provides athe alternating.
The Last Leg The Ups and Downs of Circuits Chapter 31.
The Ups and Downs of Circuits The End is Near! Quiz – Nov 18 th – Material since last quiz. (Induction) Exam #3 – Nov 23 rd – WEDNESDAY LAST CLASS –
Alternating Current (AC) R, L, C in AC circuits
Inductance and AC Circuits. Mutual Inductance Self-Inductance Energy Stored in a Magnetic Field LR Circuits LC Circuits and Electromagnetic Oscillations.
Copyright © 2009 Pearson Education, Inc. Chapter 33 Inductance, Electromagnetic Oscillations, and AC Circuits Part II.
ELECTRICAL CIRCUIT CONCEPTS
Copyright R. Janow – Spring 2015 Physics Electricity and Magnetism Lecture 14 - AC Circuits, Resonance Y&F Chapter 31, Sec The Series RLC.
Fig 33-CO These large transformers are used to increase the voltage at a power plant for distribution of energy by electrical transmission to the power.
Slide 1Fig 33-CO, p Slide 2Fig 33-1, p the basic principle of the ac generator is a direct consequence of Faraday’s law of induction. When.
Alternating Current Circuits Chapter 33 (continued)
Lecture 19-1 Potential Difference Across Inductor VV ++ - I internal resistance Analogous to a battery An ideal inductor has r=0 All dissipative effects.
Chapter 31 Lecture 33: Alternating Current Circuits: II HW 11 (problems): 30.58, 30.65, 30.76, 31.12, 31.26, 31.46, 31.56, Due Friday, Dec 11. Final.
Chapter 8 Alternating Current Circuits. AC Circuit An AC circuit consists of a combination of circuit elements and an AC generator or source An AC circuit.
Physics Electricity and Magnetism Lecture 14 - AC Circuits, Resonance Y&F Chapter 31, Sec The Series RLC Circuit. Amplitude and Phase.
Copyright R. Janow – Fall 2015 Physics Electricity and Magnetism Lecture 14E - AC Circuits & Resonance I – Series LCR Y&F Chapter 31, Sec. 3 – 8.
Halliday/Resnick/Walker Fundamentals of Physics 8th edition
Lecture 19-1 RL Circuits – Starting Current 2. Loop Rule: 3. Solve this differential equation τ=L/R is the inductive time constant 1.Switch to e at t=0.
Copyright © 2009 Pearson Education, Inc. Chapter 30 Inductance, Electromagnetic Oscillations, and AC Circuits.
RLC Circuits PHY2049: Chapter 31 1.
Copyright R. Janow – Spring 2016 Physics Electricity and Magnetism Lecture 14 - AC Circuits, Resonance Y&F Chapter 31, Sec Phasor Diagrams.
Physics 213 General Physics Lecture Last Meeting: Self Inductance, RL Circuits, Energy Stored Today: Finish RL Circuits and Energy Stored. Electric.
Copyright © 2009 Pearson Education, Inc. Chapter 29 Electromagnetic Induction and Faraday’s Law.
AC Circuits and Resonance Conclusion
Inductance, Electromagnetic Oscillations, and AC Circuits
Chapter 22: AC Circuits Figure (a) Direct current. (b) Alternating current.
Chapter 31 Electromagnetic Oscillations and Alternating Current
Electromagnetic Oscillations and Alternating Current
Lecture Outline Chapter 24 Physics, 4th Edition James S. Walker
Presentation transcript:

Electromagnetic Oscillations and Alternating Current Chapter 33

Oscillations in an LC Circuit We will discover that charge sloshes back and forth. As this happens the current goes one way then the other. Analogy: a block moving on a spring. Here total energy (kinetic + potential) is constant. For the LC circuit total energy (electric + magnetic) is constant.

+ + i i i i i i LC Circuit time

Analyzing an LC Circuit Total energy in the circuit: Differentiate : No change in energy

Total energy in the circuit: Differentiate : No change in energy Analyzing an LC Circuit

Total energy in the circuit: Differentiate : No change in energy Analyzing an LC Circuit

Total energy in the circuit: Differentiate : No change in energy The charge sloshes back and forth with frequency  = (LC) -1/2 The charge sloshes back and forth with frequency  = (LC) -1/2 Analyzing an LC Circuit

Current Current is maximum when charge is zero, and vice versa. Energy: Analyzing an LC Circuit

RLC Circuit: Damped Oscillations R L C The change here is that energy is dissipated in the resistor: A similar analysis gives current and charge that continue to oscillate but with amplitudes that decay exponentially:

Alternating Current Circuits  is the angular frequency (angular speed) [radians per second]. Sometimes instead of  we use the frequency f [cycles per second] Frequency  f [cycles per second, or Hertz (Hz)]  f V = V P sin (  t -  v ) I = I P sin (  t -  I ) An “AC” circuit is one in which the driving voltage and hence the current are sinusoidal in time.  vv  V(t) tt VpVp -V p

V p and I p are the peak current and voltage. We also use the “root-mean-square” values: V rms = V p / and I rms =I p /  v and  I are called phase differences (these determine when V and I are zero). Usually we’re free to set  v =0 (but not  I ). Alternating Current Circuits V = V P sin (  t -  v ) I = I P sin (  t -  I )  vv  V(t) tt VpVp -V p V rms I/I/ I(t) t IpIp -Ip-Ip I rms

Example: household voltage In the U.S., standard wiring supplies 120 V at 60 Hz. Write this in sinusoidal form, assuming V(t)=0 at t=0.

Example: household voltage In the U.S., standard wiring supplies 120 V at 60 Hz. Write this in sinusoidal form, assuming V(t)=0 at t=0. This 120 V is the RMS amplitude: so V p =V rms = 170 V.

Example: household voltage In the U.S., standard wiring supplies 120 V at 60 Hz. Write this in sinusoidal form, assuming V(t)=0 at t=0. This 120 V is the RMS amplitude: so V p =V rms = 170 V. This 60 Hz is the frequency f: so  =2  f=377 s -1.

Example: household voltage In the U.S., standard wiring supplies 120 V at 60 Hz. Write this in sinusoidal form, assuming V(t)=0 at t=0. This 120 V is the RMS amplitude: so V p =V rms = 170 V. This 60 Hz is the frequency f: so  =2  f=377 s -1. So V(t) = 170 sin(377t +  v ). Choose  v =0 so that V(t)=0 at t=0: V(t) = 170 sin(377t).

Resistors in AC Circuits V R ~ EMF (and also voltage across resistor): V = V P sin (  t) Hence by Ohm’s law, I=V/R: I = (V P /R) sin(  t) = I P sin(  t) (with I P =V P /R) V and I “In-phase” V tt  I 

This looks like I P =V P /R for a resistor (except for the phase change). So we call X c = 1/(  C) the Capacitive Reactance Capacitors in AC Circuits V ~ C Start from: q = C V [V=V p sin(  t)] Take derivative: dq/dt = C dV/dt So I = C dV/dt = C V P  cos (  t) I = C  V P sin (  t +  /2) The reactance is sort of like resistance in that I P =V P /X c. Also, the current leads the voltage by 90 o (phase difference). V tt   I V and I “out of phase” by 90º. I leads V by 90º.

Capacitor Example V ~ C A 100 nF capacitor is connected to an AC supply of peak voltage 170V and frequency 60 Hz. What is the peak current? What is the phase of the current? What is the dissipated power?

Again this looks like I P =V P /R for a resistor (except for the phase change). So we call X L =  L the Inductive Reactance Inductors in AC Circuits L V = V P sin (  t) Loop law: V +V L = 0 where V L = -L dI/dt Hence: dI/dt = (V P /L) sin(  t). Integrate: I = - (V P / L  cos (  t) or I = [V P /(  L)] sin (  t -  /2) ~ Here the current lags the voltage by 90 o. V tt   I V and I “out of phase” by 90º. I lags V by 90º.

Inductor Example L ~ V A 10 mH inductor is connected to an AC supply of peak voltage 10V and frequency 50 kHz. What is the peak current? What is the phase of the current? What is the dissipated power?

Circuit element Resistance or Reactance AmplitudePhase ResistorRV R = I P R I, V in phase Capacitor X c =1/  C V C =I P X c I leads V by 90° Inductor XL=LXL=L V L =I P X c I lags V by 90°

Phasor Diagrams VpVp IpIp  t Resistor A phasor is an arrow whose length represents the amplitude of an AC voltage or current. The phasor rotates counterclockwise about the origin with the angular frequency of the AC quantity. Phasor diagrams are useful in solving complex AC circuits. The “y component” is the actual voltage or current. A phasor is an arrow whose length represents the amplitude of an AC voltage or current. The phasor rotates counterclockwise about the origin with the angular frequency of the AC quantity. Phasor diagrams are useful in solving complex AC circuits. The “y component” is the actual voltage or current.

Phasor Diagrams VpVp IpIp  t VpVp IpIp ResistorCapacitor A phasor is an arrow whose length represents the amplitude of an AC voltage or current. The phasor rotates counterclockwise about the origin with the angular frequency of the AC quantity. Phasor diagrams are useful in solving complex AC circuits. The “y component” is the actual voltage or current. A phasor is an arrow whose length represents the amplitude of an AC voltage or current. The phasor rotates counterclockwise about the origin with the angular frequency of the AC quantity. Phasor diagrams are useful in solving complex AC circuits. The “y component” is the actual voltage or current.

Phasor Diagrams VpVp IpIp  t VpVp IpIp VpVp IpIp ResistorCapacitor Inductor A phasor is an arrow whose length represents the amplitude of an AC voltage or current. The phasor rotates counterclockwise about the origin with the angular frequency of the AC quantity. Phasor diagrams are useful in solving complex AC circuits. The “y component” is the actual voltage or current. A phasor is an arrow whose length represents the amplitude of an AC voltage or current. The phasor rotates counterclockwise about the origin with the angular frequency of the AC quantity. Phasor diagrams are useful in solving complex AC circuits. The “y component” is the actual voltage or current.