September 15, 2010 Tsutomu Mibe (KEK) for the J-PARC muon g-2 collaboration.

Slides:



Advertisements
Similar presentations
K. Kirch Search for the EDM at low ? Motivation Frozen spin technique High and low A compact storage ring experiment?
Advertisements

E821 SC Inflector and Beyond Wuzheng Meng 12 June 2008.
Neutron Irradiation Measurement for Superconducting Magnet Materials at Low Temperature Tatsushi NAKAMOTO KEK.
October 14, 2009 Tsutomu Mibe ( 三部 勉) KEK 1.
4th July, 2002NuFact 2002 Workshop at Imperial College, London Possibility on a point positive muon source for a neutrino factory by laser excitation of.
Target & Capture for PRISM Koji Yoshimura On behalf of PRISM Target Group Institute of Particle and Nuclear Science High Energy Accelerator Research Organization.
Pion capture and transport system for PRISM M. Yoshida Osaka Univ. 2005/8/28 NuFACT06 at UCI.
Progress on the MICE Cooling Channel Solenoid Magnet System
Striplet option of Super Belle Silicon Vertex Detector Talk at Joint Super B factory workshop, Honolulu 20 April 2005 T.Tsuboyama.
B. Lee Roberts, PANIC05, Santa Fe, 27 October, p. 1/35 Muon (g-2) Status and Plans for the Future B. Lee Roberts Department of Physics Boston University.
B. Lee Roberts, HIFW04, Isola d’Elba, 6 June p. 1/39 Future Muon Dipole Moment Measurements at a high intensity muon source B. Lee Roberts Department.
Development of Superconducting Magnets for Particle Accelerators and Detectors in High Energy Physics Takakazu Shintomi and Akira Yamamoto On behalf of.
FFAG Concepts and Studies David Neuffer Fermilab.
J-PARC: Where is it? J-PARC (Japan Proton Accelerator Research Complex) Tokai, Japan 50 GeV Synchrotron (15  A) 400 MeV Linac (350m) 3 GeV Synchrotron.
Storage Ring : Status, Issues and Plans C Johnstone, FNAL and G H Rees, RAL.
Conveneers: M. Grassi (INFN, Pisa), K. Ishida (RIKEN), Y. Semertzidis (BNL) Summary of WG4, Part Two. Yannis Semertzidis, BNL 1 August, 2004 Most muon.
Polarimetry of Proton Beams at RHIC A.Bazilevsky Summer Students Lectures June 17, 2010.
What’s been Achieved and What’s to be Done K. Yokoya ILC Annual Meeting 2012/12/20 ILC Annual, Yokoya1.
FFAG-Workshop 2006, Kumatori, Osaka, Japan Injection study for 6-sector PRISM FFAG by using pulsed alpha particles Yasushi Arimoto, Toshiyuki Oki, Makoto.
WG4 Summary -Intense Muon Physics- Conveners Y. Semertzdis (BNL), M. Grassi (Pisa), K. Ishida (RIKEN) summary-1 for muon applications by K. Ishida.
The ISIS strong focusing synchrotron also at the Rutherford Appleton Laboratory. Note that ISIS occupies the same hall as NIMROD used to and re- uses some.
Target & Capture for PRISM Koji Yoshimura Institute of Particle and Nuclear Science High Energy Accelerator Research Organization (KEK)
Virtual Accelerator at J-PARC 3 GeV Rapid Cycling Synchrotron H. Harada*, K. Shigaki (Hiroshima University in Japan), H. Hotchi, F. Noda, H. Sako, H. Suzuki,
Spin at J-PARC Naohito Saito for Shoji Nagamiya. Executive Summary Spin physics at J-PARC, now The facility is starting up; Only spin physics would be.
Setup for hypernuclear gamma-ray spectroscopy at J-PARC K.Shirotori Tohoku Univ. Japan for the Hyperball-J collaboration J-PARC E13 hypernuclear  -ray.
Study of Pion Capture Solenoids for PRISM H.Ohnishi AB M. Aoki C, Y. Ajima A, N. Fukasawa AD, K. Ishibashi B, Y. Kuno C, T. Miura A, K. Nakahara C, T.
Status of E391a Search for K L    decay G.Y.Lim IPNS, 32nd ICHEP 19 th August 2004 Beijing.
Thomas Roser Snowmass 2001 June 30 - July 21, 2001 Polarized Proton Acceleration and Collisions Spin dynamics and Siberian Snakes Polarized proton acceleration.
Muon (g-2) Experiments Matthew Wright Luo Ouyang.
1 Flux concentrator for SuperKEKB Kamitani Takuya IWLC October.20.
Polarized Proton Solid Target for RI beam experiments M. Hatano University of Tokyo H. Sakai University of Tokyo T. Uesaka CNS, University of Tokyo S.
M. Aoki Translation of slides in 2010 JPS meeting (Okayama) By K. Shimomura and M. Aoki M. Aoki A , T. Ebihara A , N. Kawamura , Y. Kuno A , P. Strasser.
Yosuke Watanabe….. University of Tokyo, RIKEN A, KEK C, Development of a GEM tracker for E16 J-PARC 1 Thanks to ???????????
+ - Concluding remarks on the R&D for a Magic Proton Ring for e  cm. Yannis K. Semertzidis, BNL The bottom line Funding request Possible action.
G-2 accelerator and cryo needs Mary Convery Muon Campus Review 1/23/13.
B Grants-in-aid KIBAN-B (FY2014~) Magnetic Dipole Moment g-2 Electric Dipole Moment EDM Utilize high intensity.
Hiromi Iinuma (KEK) for New collaboration New collaboration 1. Motivation and goal 2. Outline of new experiment 3. Summary.
Klaus P. Jungmann, Kernfysisch Versneller Instituut, Groningen, NL Arbeitstreffen „Hadronen und Kerne“, Pommersfelden, 26 September 2001 Standard Model.
G-2, EDM, COMET muon particle physics programmes at J-PARC Mu_01 Satoshi MIHARA IPNS, KEK FKPPL-FJPPL workshop, Yonesei Univ.
The RICH Detectors of the LHCb Experiment Carmelo D’Ambrosio (CERN) on behalf of the LHCb RICH Collaboration LHCb RICH1 and RICH2 The photon detector:
IDS-NF Accelerator Baseline The Neutrino Factory [1, 2] based on the muon storage ring will be a precision tool to study the neutrino oscillations.It may.
Brian Plimley Physics 129 November Outline  What is the anomalous magnetic moment?  Why does it matter?  Measurements of a µ  : CERN.
Summary of Nufact-03 Alain Blondel NuFact 03 5th International Workshop on Neutrino Factories & Superbeams Columbia University, New York 5-11 June 2003.
1 Status of the T2K long baseline neutrino oscillation experiment Atsuko K. Ichikawa (Kyoto univeristy) For the T2K Collaboration.
Measurement of T-violating Transverse Muon Polarization in  + →     Decays at J-PARC Suguru SHIMIZU Osaka University Oct. 6, 2006 SPIN2006.
Thomas Roser Snowmass 2001 June 30 - July 21, 2001 Proton Polarimetry Proton polarimeter reactions RHIC polarimeters.
E + e - hadronic cross section and muon g-2 Brendan Casey PIC 2014 September 17, 2014 Sept 11, 2014 muon g-2 experimental hall.
September 2007SLAC IR WS Very Forward Instrumentation of the ILC Detector Wolfgang Lohmann, DESY Talks by M. Morse, W. Wierba, myself.
A possible way to measure the deuteron EDM at COSY (A precursor to the dedicated EDM ring at IKP FZJ) W.Morse (BNL), N.Nikolaev (IKP FZJ & Landau Inst)
 Output of Project X  1 “blast” = 9mA*1ms = 5.6e13 (protons)/(1.4 s cycle)  = 4e13 p/s on average (!!)  = 50 kW average beam power  = 8e20/yr (2e7.
Classical picture: rotation of the something Introduction to Spin Physics mass charge One of three intrinsic characteristics of elementary particle 2015October.
E989 Muon (g-2) EMG Lee Roberts for the E989 Collaboration B. Lee Roberts - EMG- 13 February
Track finding with g-2 silicon tracker 2 nd Workshop on Muon g-2 and EDM in the LHC Era May 5, 2012 Kazuki Ueno (RIKEN)
Electric Dipole Moment of the Deuteron Experiment: EDM Violates T-Symmetry: Connected to CP-Violation and the Matter-Antimatter Asymmetry of the Universe.
Study of the MPPC for the GLD Calorimeter Readout Satoru Uozumi (Shinshu University) for the GLD Calorimeter Group Kobe Introduction Performance.
1 Muon g-2 Experiment at BNL Presented by Masahiko Iwasaki (Tokyo Institute of Technology) Akira Yamamoto (KEK) for E821 g-2 Collaboration: Boston, BNL,
Yannis K. Semertzidis Brookhaven National Laboratory New opportunities at CERN CERN, 12 May 2009 Storage Ring EDM Experiments The storage ring method can.
– + + – Search for the μEDM using a compact storage ring A. Adelmann 1, K. Kirch 1, C.J.G. Onderwater 2, T. Schietinger 1, A. Streun 1 1 Paul Scherrer.
Electric Dipole Moments: Searches at Storage Rings
     Possibility of precise
“Electron cooling device in the project NESR (FAIR)"
K2K and JHF-nu muon monitor
Acceleration of Polarized Protons and Deuterons at HESR/FAIR
g-2 detector overview LPNHE Paris May 25, 2012 Tsutomu Mibe
The G0 experiment at JLAB
Precision Muon Experiments
The silicon detector of the muon g-2 experiment at J-PARC
electric dipole moments (EDM)
Direct Measurement of the 8Li + d reactions of astrophysical interest
The MPPC Study for the GLD Calorimeter Readout
Presentation transcript:

September 15, 2010 Tsutomu Mibe (KEK) for the J-PARC muon g-2 collaboration

Courtesy F. Jergerlehner, arXiv: Confirmation(s) of the discrepancy by future experiments are extremely important. +e + e - data Experiment

 Contributions from SUSY diagrams covers the E821 deviation.  Strong sensitivity to tan   Complementary to LHC searches. Weitershausen, Schafer, Stockinger-Kim, Stockinger Phys.Rev.D81: (2010) One-loop One-loop + photonic two-loop

 Precession frequency  Focusing electric field to confine muons in the storage ring.  At the magic momentum  1/(  2 -1) = a    = 29.3, p = GeV/c 4 With present upper limit, EDM term can safely be neglected in g-2 measurement.

 Disadvantages  No longer at magic momentum.  Muon decays more quickly.  … However, experimental apparatus can be compact.  Better accuracy of B-field, e.x. 1 ppm local accuracy acheived in MRI magnet  Stronger B-field, i.e. more precession  Better environmental control  temperature, EM noise shielding etc.  Completely different systematics than the BNL E821 or FNAL  Ok, but how do we deal with the  ×E term?  Zero electric field 5 Hitachi co.

6 Zero Electric field (E = 0 ) Fine, but how do we confine muons without focusing E-field?  Ultra-cold muon beam (p T /p < ) Equations of spin motion is as simple as at the magic momentum

Bird’s eye photo in Feb. 2008

9

10 Resonant Laser Ionization of Muonium (~10 6  + /s) Graphite target (20 mm) 3 GeV proton beam ( 333 uA) Surface muon beam (28 MeV/c, 4x10 8 /s) Muonium Production (300 K ~ 25 meV ⇒ 2.3 keV/c)

11 Resonant Laser Ionization of Muonium (~10 6  + /s) Graphite target (20 mm) 3 GeV proton beam ( 333 uA) Surface muon beam (28 MeV/c, 4x10 8 /s) Muonium Production (300 K ~ 25 meV ⇒ 2.3 keV/c) Silicon Tracker 66 cm diameter Super Precision Magnetic Field (3T, ~1ppm local precision)

13

 71 members (…still evolving)  M. Aoki, P. Bakule, B. Bassalleck, G. Beer, A. Deshpande, S. Eidelman, D. E. Fields, M. Finger, M. Finger Jr., Y. Fujirawa, S. Hirota, H. Iinuma, M. Ikegami, K. Ishida, M. Iwasaki, T. Kakurai, T. Kamitani, Y. Kamiya, N. Kawamura, S. Komamiya, K. Koseki, Y. Kuno, O. Luchev, G. Marshall, M. Masuzawa, Y. Matsuda, T. Matsuzaki, T. Mibe, K. Midorikawa, S. Mihara, Y.Miyake, J. Murata, W.M. Morse, R. Muto, K. Nagamine, T. Naito, H. Nakayama, M. Naruki, H. Nishiguchi, M. Nio, D. Nomura, H. Noumi, T. Ogawa, T. Ogitsu, K. Ohishi, K. Oide, A. Olin, N. Saito, N.F. Saito, Y. Sakemi, K. Sasaki, O. Sasaki, A. Sato, Y. Semeritzidis, K. Shimomura, B. Shwartz, P. Strasser, R. Sugahara, K. Tanaka, N. Terunuma, D. Tomono, T.Toshito, K. Ueno, V. Vrba, S. Wada, A. Yamamoto, K. Yokoya, K. Yokoyama, Ma. Yoshida, M. H. Yoshida, and K. Yoshimura  18 Institutions  Academy of Science, BNL, BINP, UC Riverside, Charles U., KEK, NIRS, UNM, Osaka U., RCNP, STFC RAL, RIKEN, Rikkyo U., SUNYSB, CRC Tohoku, U. Tokyo, TRIUMF, U. Victoria  6 countries  Czech, USA, Russia, Japan, UK, Canada 14

Requrements: times more muons, and Cooler muon than RAL

16 Requrements: times more muons, and Cooler muon than RAL 670 times higher surface muon per spill at J-PARC 2.4 x 10 4 /spill  1600 x 10 4 /spill (25 spill/sec) 670 times higher surface muon per spill at J-PARC 2.4 x 10 4 /spill  1600 x 10 4 /spill (25 spill/sec) 100 times intense laser 1  J  100  J 100 times intense laser 1  J  100  J Room temperature target (hot tangsten  silica aerogel?) 2000K (15keV/c)  300K (2.3keV/c) Room temperature target (hot tangsten  silica aerogel?) 2000K (15keV/c)  300K (2.3keV/c)

RIKEN/KEK/TRIUMF/U.Victoria

target sample June 23 ~ July 1, 2010 B= 6-30 Gauss

L-R asymmetry= A Mu e - t cos(  Mu t+  Mu ) + A  cos(   t+   )+A 0 muonium spin rotation  spin rotation Silica aerogel (0.05g/cm 3 ) Vacuum oxygen filled Online data

simulation This data will define when and where to shoot the laser. A test experiment at RAL with new laser & target is planned in MWDC NaI MCP(electron capture) target e+ Nov. 18 – 30, 2010  + beam

21 Hi Power Ly-  Laser System * DFB-LD for stability * Kr-cell to mix/produce 100 u J Hi Power Ly-  Laser System * DFB-LD for stability * Kr-cell to mix/produce 100 u J Muon LINAC * RFQ(?)+DTL+disk loaded Muon LINAC * RFQ(?)+DTL+disk loaded z(mm) p (MeV/c) Precision Magnet and Beam Injection Hi-rate Si Tracker DSSD sensor SiLC based FEE Hi-rate Si Tracker DSSD sensor SiLC based FEE

 2009 June : Letter of intent  2009 Dec : Proposal submitted to J-PARC PAC  2010 June : 1 st collaboration meeting at KEK  2010 Dec : Conceptual Design Report ...  2015 : First beam

 A new muon g-2 experiment at J-PARC:  Off-magic momentum  Ultra-slow muon beam + compact g-2 ring  Complementary to  KEK lab management support R&Ds. There are many progress are being made. 23

 Driven by 25 Hz proton beam  Time-zero defined by Laser Ionization 24

 Detector area  0.12 * number of vanes [m 2 ]  2.9 m 2 for 24 vanes  Number of sensors  384 for 24 vanes  Number of channels  Assume 0.2 mm pitch  115k for 24 vanes* – *288k for multi-segments readout 25 g-2 silicon tracker 576 mm 580 mm

26 front back Support DSSD sensors Readout chip

27  Sensor type : Double-sided SSD  Chip size : ~12 cm x 6 cm  Thickness: 320 um  Readout: AC-couple  Depletion voltage : 80 V  Detector capacitance : ~100pF*  Strip pitch : 200um*  * to be determined by further studies. From Belle SVD page p-siden-side

28 H. Iinuma  Inject muon beam with vertical angle to avoid interference in the injection region  Deflect P T into P L by radial field  Stabilize beam by kicker to “good filed region”  Double-kicker or  Weak kicker ?  Better monitoring/ shimming necessary!

 “Active” shimming with current adjustment for separate coils  Employed in many MRI 29 From GE Website :

 Being developed with MRI precision magnet + NMR probes + Hall probes 30

 3T- MRI at N ational I nstitute of R adiological S cience done  NMR and Hall Probes (vector)  First trial provided < 0.3 ppm stability for NMR (preliminary)  To be continued 31

 Conceptual Design developed  Vibration measurement is ongoing 32

 Cryostat wall is assumed to be SUS316 or Al  Eddy current time profile is similar to Kicker current  After 150 nsec, no remaining effect  To be continued 33

 Not an extreme, but requires serious efforts  Material : NbTi /Copper  Cu/Sc ratio : 4  Central Field:3T  Peak Field on Cable: 5.4 T  Nominal current : 417 A  Stored Energy : 23 MJ  Inductance : H  Total mass : 3.7 t  Well within current Technology ! 34