R. Demkowicz-Dobrzański 1, J. Kołodyński 1, K. Banaszek 1, M. Jarzyna 1, M. Guta 2 1 Faculty of Physics, Warsaw University, Poland 2 School of Mathematical.

Slides:



Advertisements
Similar presentations
1 Taoufik AMRI. Overview 3 Chapter II Quantum Protocols Chapter III Quantum States and Propositions Chapter VI Detector of « Schrödingers Cat » States.
Advertisements

Beyond The Standard Quantum Limit B. W. Barr Institute for Gravitational Research University of Glasgow.
APRIL 2010 AARHUS UNIVERSITY Simulation of probed quantum many body systems.
Quantum-limited measurements: One physicist’s crooked path from quantum optics to quantum information I.Introduction II.Squeezed states and optical interferometry.
Fixing the lower limit of uncertainty in the presence of quantum memory Archan S. Majumdar S. N. Bose National Centre for Basic Sciences, Kolkata Collaborators:
The Extraction of Higher Order Field Correlations from a First Order Interferometer Scott Shepard Louisiana Tech University.
From Gravitational Wave Detectors to Completely Positive Maps and Back R. Demkowicz-Dobrzański 1, K. Banaszek 1, J. Kołodyński 1, M. Jarzyna 1, M. Guta.
Experimental quantum estimation using NMR Diogo de Oliveira Soares Pinto Instituto de Física de São Carlos Universidade de São Paulo
Quantum limits in optical interferometry R. Demkowicz-Dobrzański 1, K. Banaszek 1, J. Kołodyński 1, M. Jarzyna 1, M. Guta 2, K. Macieszczak 1,2, R. Schnabel.
Matt Jones Precision Tests of Fundamental Physics using Strontium Clocks.
Q UANTUM M ETROLOGY IN R EALISTIC S CENARIOS Janek Kolodynski Faculty of Physics, University of Warsaw, Poland PART I – Q UANTUM M ETROLOGY WITH U NCORRELATED.
Displaced-photon counting for coherent optical communication Shuro Izumi.
Quantum enhanced metrology R. Demkowicz-Dobrzański 1, K. Banaszek 1, U. Dorner 2, I. A. Walmsley 2, W. Wasilewski 1, B. Smith 2, J. Lundeen 2, M. Kacprowicz.
Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3.
Universal Optical Operations in Quantum Information Processing Wei-Min Zhang ( Physics Dept, NCKU )
Complexity and Disorder at Ultra-Low Temperatures 30th Annual Conference of LANL Center for Nonlinear Studies SantaFe, 2010 June 25 Quantum metrology:
School of Physics & Astronomy FACULTY OF MATHEMATICAL & PHYSICAL SCIENCE Parallel Transport & Entanglement Mark Williamson 1, Vlatko Vedral 1 and William.
TeV Particle Astrophysics August 2006 Caltech Australian National University Universitat Hannover/AEI LIGO Scientific Collaboration MIT Corbitt, Goda,
Witnesses for quantum information resources Archan S. Majumdar S. N. Bose National Centre for Basic Sciences, Kolkata, India Collaborators: S. Adhikari,
P. Bertet Quantum Transport Group, Kavli Institute for Nanoscience, TU Delft, Lorentzweg 1, 2628CJ Delft, The Netherlands A. ter Haar A. Lupascu J. Plantenberg.
R. Demkowicz-Dobrzański 1, J. Kołodyński 1, M. Guta 2 1 Faculty of Physics, Warsaw University, Poland 2 School of Mathematical Sciences, University of.
RF readout scheme to overcome the SQL Feb. 16 th, 2004 Aspen Meeting Kentaro Somiya LIGO-G Z.
Quantum metrology: dynamics vs. entang lement I.Introduction II.Ramsey interferometry and cat states III.Quantum and classical resources IV.Quantum information.
QCMC’06 1 Joan Vaccaro Centre for Quantum Dynamics, Centre for Quantum Computer Technology Griffith University Brisbane Group theoretic formulation of.
Jian-Wei Pan Decoherence-free sub-space and quantum error-rejection Jian-Wei Pan Lecture Note 7.
SQL Related Experiments at the ANU Conor Mow-Lowry, G de Vine, K MacKenzie, B Sheard, Dr D Shaddock, Dr B Buchler, Dr M Gray, Dr PK Lam, Prof. David McClelland.
The Road to Quantum Computing: Boson Sampling Nate Kinsey ECE 695 Quantum Photonics Spring 2014.
Towards a Universal Count of Resources Used in a General Measurement Saikat Ghosh Department of Physics IIT- Kanpur.
Coherence and Decoherence on fundamental sensitivity limits of quantum probes in metrology and computation R. Demkowicz-Dobrzański 1, K. Banaszek 1, J.
Photon Efficiency Measures & Processing Dominic W. Berry University of Waterloo Alexander I. LvovskyUniversity of Calgary.
School of something FACULTY OF OTHER School of Physics and Astronomy FACULTY OF MATHEMATICAL AND PHYSICAL SCIENCES Putting entanglement to work: Super-dense.
S. ChelkowskiSlide 1WG1 Meeting, Birmingham 07/2008.
Copenhagen interpretation Entanglement - qubits 2 quantum coins 2 spins ( spin “up” or spin “down”) Entangled state many qubits: Entangled state:
Search for Quantum Gravity Using Atom Interferometers Charles Wang, University of Aberdeen, UK Robert Bingham, Rutherford Appleton Laboratory, UK Tito.
Quantum computation speed-up limits from quantum metrological precision bounds R. Demkowicz-Dobrzański 1, K. Banaszek 1, J. Kołodyński 1, M. Jarzyna 1,
Using entanglement against noise in quantum metrology
Pinning of Fermionic Occupation Numbers Christian Schilling ETH Zürich in collaboration with M.Christandl, D.Ebler, D.Gross Phys. Rev. Lett. 110,
Pablo Barberis Blostein y Marc Bienert
From Quantum metrological precision bounds to Quantum computation speed-up limits R. Demkowicz-Dobrzański 1, J. Kołodyński 1, M. Jarzyna 1, K. Banaszek.
Laguerre-Gauss Modes for Future Gravitational Wave Detectors Keiko Kokeyama University of Birmingham 2 nd ET Annual Erice, Sicily, Italy
SQL Related Experiments at the ANU Conor Mow-Lowry, G de Vine, K MacKenzie, B Sheard, Dr D Shaddock, Dr B Buchler, Dr M Gray, Dr PK Lam, Prof. David McClelland.
Quantum metrology: dynamics vs. entanglement
Distillation and determination of unknown two-qubit entanglement: Construction of optimal witness operator Heung-Sun Sim Physics, KAIST ESF conference:
Carmen Porto Supervisor: Prof. Simone Cialdi Co-Supervisor: Prof. Matteo Paris PhD school of Physics.
QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN Qudit Implementations with Energy-Time Entangled Photons 1 Bänz Bessire Quantum Optics Lab – The Stefanov Group.
Sense and sensitivity:,,robust’’ quantum phase estimation R. Demkowicz-Dobrzański 1, K. Banaszek 1, U. Dorner 2, I. A. Walmsley 2, W. Wasilewski 1, B.
From Quantum metrological precision bounds to Quantum computation speed-up limits R. Demkowicz-Dobrzański, M. Markiewicz Faculty of Physics, University.
Metrology and integrated optics Geoff Pryde Griffith University.
MICRA: status report Exploration of atom-surface forces on a micrometric scale via high sensitivity force measurements with ultracold quantum gases. Objectives:
Atomic Clocks Niles Bohr Institute PhD Student: Johannes Borregaard
Role of entanglement in extracting information on quantum processes
Improving Measurement Precision with Weak Measurements
Coherent and squeezed states of the radiation field
Matrix Product States in Quantum Metrology
Quantum-limited measurements:
Using Quantum Means to Understand and Estimate Relativistic Effects
Fundamental bounds on stability of atomic clocks
M. Stobińska1, F. Töppel2, P. Sekatski3,
the illusion of the Heisenberg scaling
Detector of “Schrödinger’s Cat” States of Light
Quantum-limited measurements:
Quantum effects in Gravitational-wave Interferometers
Quantum Optics and Macroscopic Quantum Measurement
The Grand Unified Theory of Quantum Metrology
The Grand Unified Theory of Quantum Metrology
Geometric Phase in composite systems
Quantum computation using two component Bose-Einstein condensates
RF readout scheme to overcome the SQL
Advanced Optical Sensing
INTERNATIONAL CONFERENCE ON QUANTUM INFORMATION
Presentation transcript:

R. Demkowicz-Dobrzański 1, J. Kołodyński 1, K. Banaszek 1, M. Jarzyna 1, M. Guta 2 1 Faculty of Physics, Warsaw University, Poland 2 School of Mathematical Sciences, University of Nottingham, United Kingdom Theoretical tools for Quantum-enhanced metrology the illusion of the Heisenberg scaling

LIGO - gravitational wave detector Michelson interferometer NIST - Cs fountain atomic clock Ramsey interferometry Precision limited by: Interferometry at its (classical) limits

1 photon in an interferometer

N independent photons the best estimator: The same (or worse) result for classical states of light Estimator uncertainty: Standard Quantum Limit (Shot noise limit)

Entanglement enhanced precision Hong-Ou-Mandel interference &

NOON states Measuremnt State preparation Heisenberg limit Standard Quantum Limit Estimator Entanglement enhanced precision

In practice: squeezed states squeezed vaccum coherent states One quadrature fluctuations below vaccum fluctuations Photon loss = decoherence

What are the fundamental bounds in presence of decoherence?

General scheme in q. metrology Interferometer with losses (gravitational wave detectors) Qubit rotation + dephasing (atomic clock frequency callibrations) Input state of N particles phase shift + decoherence measurementestimation

General scheme in q. metrology Input state of N particles phase shift + decoherence measurementestimation a priori knowledge Very hard problem!

Local approach Global approach we want to sense small fluctuations around a known phase no a priori knowledge about the phase Tool: Symmetry implies a simple structure of the optimal measurement Tool: Fisher Information, Cramer- Rao bound Heisenberg scaling The optimal N photon state for interferometry: J. J.. Bollinger, W. M. Itano, D. J. Wineland, and D. J. Heinzen, Phys. Rev. A 54, R4649 (1996). Optimal state: D. W. Berry and H. M. Wiseman, Phys. Rev. Lett. 85, 5098 (2000).

Impact of decoherence? Global approach Tool: Symmetry implies a simple structure of the optimal measurement Local approach Tool: Fisher Information, Cramer- Rao bound - No analytical formulas for the optimal precision and states - nontrivial eigenvalue problem -Fisher Information, more difficult to calculate - Optimal states do not have simple structure RDD, et al. PRA 80, (2009) U. Dorner, et al., PRL. 102, (2009) Analytical lower bound: S. Knysh, V. Smelyanskiy, G. Durkin PRA 83, (2011) J. Kolodynski, RDD, PRA 82, (2010) Analytical lower bound: Heisenberg scaling lost!

Fundamental bound on quantum enhancement of precision

General method for other decoherence models? Fisher information via purifications System Environment + B. M. Escher, R. L. de Matos Filho, and L. Davidovich, Nature Physics, 7, 406 (2011) A. Fujiwara and H. Imai, J. Phys. A: Math. Theor., 41, (2008).

General method for other decoherence models? Fisher information via purifications B. M. Escher, R. L. de Matos Filho, and L. Davidovich, Nature Physics, 7, 406 (2011) Kraus representation Equivalent Kraus set Minmization over different Kraus representation non-trivial dephasing

Can you do it simpler, more general, more intutive? Yes!!!

Classical simulation of a quantum channel Convex set of quantum channels

Classical simulation of a quantum channel Convex set of quantum channels Parameter dependence moved to mixing probabilities Before:After: By Markov property…. K. Matsumoto, arXiv: (2010)

Classical simulation of N channels used in parallel

=

=

Precision bounds thanks to classical simulation Generlic decoherence model will manifest shot noise scaling To get the tighest bound we need to find the „worst” classical simulation For unitary channelsHeisenberg scaling possible

The „Worst” classical simulation Quantum Fisher Information at a given depends only on The „worst” classical simulation: Works for non-extremal channels It is enough to analize,,local classical simulation’’: RDD, M. Guta, J. Kolodynski, arXiv: (2012)

Dephasing: derivation of the bound in 60 seconds! dephasing Choi-Jamiolłowski-isomorphism (positivie operators correspond to physical maps) RDD, M. Guta, J. Kolodynski, arXiv: (2012)

Dephasing: derivation of the bound in 60 seconds! dephasing Choi-Jamiolłowski-isomorphism (positivie operators correspond to physical maps) RDD, M. Guta, J. Kolodynski, arXiv: (2012)

Summary RDD, M. Guta, J. Kolodynski, arXiv: (2012) Heisenberg scaling is lost for a generic decoherence channel even for infinitesimal noise Simple bounds on precision can be derived using classical simulation idea Channels for which classical simulation does not work ( extremal channels) have less Kraus operators, other methods easier to apply