Development of Transverse Modes Damped DLA Structure* C. Jing, P. Schoessow, A. Kanareykin, Euclid Techlabs, LLC R. Konecny, W. Gai, J. Power, W. Liu,

Slides:



Advertisements
Similar presentations
Multi-user, High Repetition-Rate, Soft X-ray FEL User Facility (based on a Collinear Dielectric Wakefield Accelerator) Euclid Techlabs LLC: C.Jing, A.Kanareykin,
Advertisements

Slab-Symmetric Dielectric- Based Accelerator Rodney Yoder UCLA PBPL / Manhattan College DoE Program Review UCLA, May 2004.
A Resonant, THz Slab- Symmetric Dielectric-Based Accelerator R. B. Yoder and J. B. Rosenzweig Neptune Lab, UCLA ICFA Advanced Accelerator Workshop Sardinia,
Wakefield Acceleration in Dielectric Structures J.B. Rosenzweig UCLA Dept. of Physics and Astronomy The Physics and Applications of High Brightness Electron.
CLIC drive beam accelerating (DBA) structure Rolf Wegner.
CLIC DBA Rolf Wegner 1 Structures for the CLIC Drive Beam Accelerator Rolf Wegner.
S. N. “ Cavities for Super B-Factory” 1 of 38 Sasha Novokhatski SLAC, Stanford University Accelerator Session April 20, 2005 Low R/Q Cavities for Super.
A. Kanareykin, Euclid Techlabs LLC, ATF Users Meeting 2012 Beam manipulation by THz self-wakefield at ATF (I) A.Kanareykin Euclid TechLabs LLC, Gaithersburg,
High Gradients in Dielectric Loaded Wakefield Structures Manoel Conde High Energy Physics Division Argonne National Laboratory AAC 08 – Santa Cruz, CA.
Development of an X-band Dielectric PETS C. Jing, Euclid Techlabs / ANL HG Workshop, May
INVESITGATION OF AN ALTERNATE MEANS OF WAKEFIELD SUPPRESSION IN CLIC MAIN LINACS CLIC_DDS.
Wakefield Acceleration in Dielectric Structures J.B. Rosenzweig UCLA Dept. of Physics and Astronomy FACET Workshop SLAC, March 18, 2010 J.B. Rosenzweig.
Workshop on Novel Concepts for Linear Accelerators and Colliders SLAC Dielectric Based HG Structures II: Diamond Structures; BBU and Multipactor.
7.8GHz Dielectric Loaded High Power Generation And Extraction F. Gao, M. E. Conde, W. Gai, C. Jing, R. Konecny, W. Liu, J. G. Power, T. Wong and Z. Yusof.
US HG Research Collaboration Workshop, SLAC, 2011 PROGRESS ON HG WAKEFIELD ACCELERATOR DEVELOPMENT EUCLID&AWA COLLABORATION A. Kanareykin for Euclid/AWA.
Advanced Accelerator Concepts 2008 Euclid Techlabs LLC CVD Diamond Dielectric Accelerating Structures * P. Schoessow, A. Kanareykin (Euclid Techlabs),
Deflecting Cavities for Advanced Accelerator Applications Kwang-Je Kim ANL ICFA Mini-Workshop Deflecting/Crabbing Cavity Applications in Accelerators April.
Development of Dielectric-Based Wakefield Power Extractors Chunguang Jing 1,2, W. Gai 1, A. Kanareykin 2, Igor Syratchev, CERN 1. High Energy Physics Division,
Course B: rf technology Normal conducting rf Part 5: Higher-order-mode damping Walter Wuensch, CERN Sixth International Accelerator School for Linear Colliders.
Dielectric Wakefield Accelerator for an X-ray FEL User Facility
AAC’08 Santa Cruz CA, July 27th - August 2nd 2008 DEVELOPMENT OF A FERROELECTRIC BASED TUNABLE DLA STRUCTURE * A.Kanareykin Euclid TechLabs LLC, Rockville,
Development of Dielectric PETS Chunguang Jing and Wei Gai ANL and Euclid CLIC workshop 2013.
A. Kanareykin, Euclid Techlabs LLC, CLIC’09 Dielectric Collimators ? A.Kanareykin Euclid TechLabs LLC, Rockville, MD CLIC’09 Workshop CERN, October 12-16,
Calculations of wakefields for the LHCb VeLo. Olga Zagorodnova Desy Hamburg April 8,
Simulation of trapped modes in LHC collimator A.Grudiev.
PBG Structure Experiments, AAC 2008 Photonic Bandgap Accelerator Experiments Roark A. Marsh, Michael A. Shapiro, Richard J. Temkin Massachusetts Institute.
Recent Euclid Wakefield AWA C. Jing, S. Antipov, A. Kanareykin, P. Schoessow, Euclid Techlabs, LLC M. Conde, W. Gai, W. Liu, J. Power, Z.
Development of a Compact Dielectric-Loaded Test Accelerator at 11.4 GHz* S.H. Gold, a) A.K. Kinkead, b) W. Gai, c) J.G. Power, c) R. Konecny, c) C. Jing,
Outline: Motivation Comparisons with: > Thick wall formula > CST Thin inserts models Tests on the Mode Matching Method Webmeeting N.Biancacci,
Trapped Modes in LHC Collimator (II) Liling Xiao Advanced Computations Department SLAC National Accelerator Laboratory.
May 5, 2011 Fermilab Daniel Mihalcea Northern Illinois University Department of Physics High Gradient Wakefield Acceleration in Dielectric-Loaded Structures.
TWO-CHANNEL RECTANGULAR DIELECTRIC WAKE FIELD ACCELERATOR STRUCTURE EXPERIMENT* G. Sotnikov, 1,2 T.C. Marshall, 1,3 S. V. Shchelkunov, 4 A. Didenko, 1,5.
ICFA Workshop on Novel Concepts for Linear Accelerators and Colliders. SLAC, July Euclid Techlabs LLC DIELECTRIC BASED HG STRUCTURES: POWER EXTRACTION,
TWO-BEAM, MULTI-MODE, DETUNED ACCSELERATING STRUCTURE S.Kazakov 1,2, S.Kuzikov 3, V.Yakovlev 4 J.L. Hirshfield 1,5, 1 Omega-p,Inc., 199 Whitney Ave., New.
P I T Z Photo Injector Test Facility Zeuthen Design consideration of the RF deflector to optimize the photo injector at PITZ S.Korepanov.
Beam Manipulation by Self-Wakefields John Power Argonne Wakefield Accelerator Facility Sergey Antipov, Alexei Kanareykin Euclid Techlabs LLC.
The Upgraded Argonne Wakefield Accelerator Facility (AWA)
Sergey Antipov, J. Qiu, C. Jing, A. Kanareykin Euclid Techlabs LLC
Helical Accelerating Structure with Controllable Beam Emittance S.V. Kuzikov 1, A.A. Vikharev 1, J.L. Hirshfield 2,3 1 Institute of Applied Physics RAS,
A. Kanareykin, Euclid Techlabs LLC, DOE Review 2013 Euclid Techlabs/AWA Collaboration Efforts on the Wakefield Accelerator Development A.Kanareykin for.
AAC’08 Santa Cruz CA, July 27th - August 2nd 2008 Beam Break-Up Effects in Dielectric Based Accelerators * Advanced Accelerator Concepts AAC’08 A.Kanareykin.
Advanced Accelerator R & D Activities at ANL-HEP Wei Gai (for the AWA group)
6 July 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Sabrina Appel | 1 Micro bunch evolution and „turbulent beams“
Transverse Coherent Transition Radiation (TCTR) Experiment First Ideas for a Measurement Setup Max-Planck-Institute for Physics Munich Olaf Reimann, Scott.
HG 2016 Workshop Design of Metallic Subwavelength Structures for Wakefield Acceleration Xueying Lu, Michael Shapiro, Richard Temkin Plasma Science and.
Feasibility and R&D Needed For A TeV Class HEP e+e- Collider Based on AWA Technology Chunguang Jing for Accelerator R&D Group, HEP Division, ANL Aug
Coherent THz radiation source driven by pre-bunched electron beam
A. Kanareykin, Euclid Techlabs LLC, CLIC’09 Dielectric Based Accelerator Collaboration Program Euclid Techlabs and Accelerator R&D, HEP, ANL A.Kanareykin.
A compact soft x-ray Free-Electron Laser facility based on a Dielectric Wakefield Accelerator C.Jing, P. Schoessow, A. Kanareykin, Euclid Techlabs LLC,
Bunch Shaping for Future Dielectric Wakefield Accelerators W. Gai Mini-Workshop on Deflecting/Crabbing RF Cavity Research and application in Accelerators.
AWA Overview and Activities Dan Wang for Wei Gai ANL HEP AWA CLIC workshop 2016.
A. Aksoy Beam Dynamics Studies for the CLIC Drive Beam Accelerator A. AKSOY CONTENS ● Basic Lattice Sketches ● Accelerating structure ● Short and long.
Demonstration of Complete Multipactor Suppression in Externally Powered Dielectric Loaded Accelerators Joint efforts from Euclid (SBIR grant DE-SC ),
Dielectric accelerators in Microwave regime and a short pulse collider concept Chunguang jing AWA & Euclid Techlabs AWLC2017 June, 2017.
А.V. Tyukhtin Saint-Petersburg State University
Finemet cavity impedance studies
BUNCH LENGTH MEASUREMENT SYSTEM FOR 500 KV PHOTOCATHODE DC GUN AT IHEP
Brief Review of Microwave Dielectric Accelerators
XFEL Beam Physics 10/30/2015 Tor Raubenheimer.
Update of CLIC accelerating structure design
TRANSVERSE RESISTIVE-WALL IMPEDANCE FROM ZOTTER2005’S THEORY
Overview Multi Bunch Beam Dynamics at XFEL
Simulation of Monopole modes trapped in LHC collimator
Simulation of trapped modes in LHC collimator
CEPC Main Ring Cavity Design with HOM Couplers
TRANSVERSE RESISTIVE-WALL IMPEDANCE FROM ZOTTER2005’S THEORY
Simulation of Monopole modes trapped in LHC collimator
Multipactor Studies Sergey Antipov1,2, C. Jing1,2, P. Schoessow1,
CEPC injector beam dynamics
CLIC Power Extraction and Transfer structure (PETS)
Presentation transcript:

Development of Transverse Modes Damped DLA Structure* C. Jing, P. Schoessow, A. Kanareykin, Euclid Techlabs, LLC R. Konecny, W. Gai, J. Power, W. Liu, HEP, ANL AAC08, July. 27 th ---Aug.2 nd, 2008 * work is supported by DoE SBIR Phase I funding.

2 Outline Introduction Structure Design Planned Experiment Summary

3 Introduction

4 Transverse mode in DLA structure 10.18GHz GHz TM01 mode Ez HEM11 mode Ez Conventional Quartz DLA

5 Surface current distributions for different modes Surface current TM01 mode (axial current only) HEM11 mode (azimuthal current included)

6 Previous work by AWA fellows* * E. Chojnacki, W. Gai, C. Ho, R. Konecny, S. Mtingwa, J. Norem, M. Rosing, P. Schoessow, and J. Simpson, J. Appl. Phys. 69 (9), 1 May Insulated conductor wires Dielectric tube Longitudinal Wake Transverse Wake

7 New Design to Heavily Damp Hybrid Modes in DLA Structure

8 Design of transverse mode damping structure Hybrid mode damping DLA SiC(ε r ~13; tanδ 11GHz) Copper Dielectrics Vacuum

9 Simulations E_TM 01 (0,1mm,z) E_HEM 11 (0,1mm,z) E field (TM01 mode) E-field (HEM11 mode)

10 Simulated parameters *In the desired frequency band, SiC (εr = 13; tanδ = 0.22) and quartz (εr =3.78; tanδ= 0.5×104) are used in the calculations. ; Slots / circumference = 22%. Comparison of the 7.8GHz Conventional and the Transverse mode Damped DLA structure. Freq.Q in conventional DLA structure Q in transverse modes damped DLA structure Accelerating mode (TM 01 ) 7.8GHz6964*6738* Transverse modes (HEM 11 ) 6.34GHz6866*23*

11 The longitudinal (red curve) and transverse (blue curve) wakefields and their spectrums in the 7.8GHz conventional DLA structure. Beam (black curve) parameters used in the calculation are: 40 nC charge, 4 mm bunch length, 30 MeV single bunch at 1 mm offset from the structure axis. The structure is currently under development, and planned to be tested at AWA facility in near future. Planned Experiment

12 Summary We are developing a hybrid mode damped DLA structure. Structure will be tested at AWA facility along with a conventional DLA structure as a comparison.