Ohm’s Law V = I x R Georg Simon Ohm (1787-1854) I= Current (Amperes or amps) V= Voltage (Volts) R= Resistance (ohms)

Slides:



Advertisements
Similar presentations
ELECTRICAL CIRCUITS All you need to be an inventor is a good imagination and a pile of junk. -Thomas Edison.
Advertisements

S.MORRIS 2006 ELECTRICAL CIRCUITS More free powerpoints at
ELECTRICAL CIRCUITS.
S.MORRIS 2006 Electricity and Magnetism More free powerpoints at All you need to be an inventor is a good imagination and a pile.
Topic 2 Electricity Within a Circuit. Static and Current Electricity: When charged particles build up in an object it is called static electricity. Another.
Electric Circuits.
1 ELECTRICAL CIRCUITS All you need to be an inventor is a good imagination and a pile of junk. -Thomas Edison.
Do Now (10/14/13):  What is Ohm’s Law?  What do you know about electric circuits?  In your own words, what is electric current?
Series and Parallel Circuits. Ohm’s Law I = V / R Georg Simon Ohm ( ) I= Current (Amperes) (amps) V= Voltage (Volts) R= Resistance (ohms)
S.MORRIS 2006 ELECTRICAL CIRCUITS More free powerpoints at
ELECTRICAL CIRCUITS. Ohm’s Law I = V / R Georg Simon Ohm ( ) I= Current (Amperes) (amps) V= Voltage (Volts) R= Resistance (ohms)
Circuits, Current and Voltage
Electricity Electrical conductors and insulators.
ELECTRICAL CIRCUITS All you need to be an inventor is a good imagination and a pile of junk. -Thomas Edison.
ELECTRICAL CIRCUITS.
ELECTRICAL CIRCUITS.
ELECTRICAL CIRCUITS All you need to be an inventor is a good imagination and a pile of junk. -Thomas Edison.
ELECTRICAL CIRCUITS All you need to be an inventor is a good imagination and a pile of junk. -Thomas Edison.
Current Electricity 1. What is Electric Current? Electric current is the flow of electricity through a conductor. The current is caused by the movement.
S.MORRIS 2006 ELECTRICAL CIRCUITS More free powerpoints at
Simple Circuits Series circuit –All in a row –1 path for electricity –1 light goes out and the circuit is broken Parallel circuit –Many paths for electricity.
S.MORRIS 2006 Currents CIRCUITS More free powerpoints at
Measuring Current and Voltage in Circuits. measuring current Electric current is measured in _______using an ammeter connected ________________ in series.
ELECTRICAL CIRCUITS All you need to be an inventor is a good imagination and a pile of junk. -Thomas Edison.
ELECTRICAL CIRCUITS. What is an electric current? An electric current is a flow of electrons through wires and components. + - In which direction does.
REVIEW of Static electricity Electricity A. Electric Charge 1. Static electricity is the accumulation of excess electric charges on an object. a. More.
Ohm’s Law PSSA Requirement Unit 9 Honors Physics.
Electrical Current & Circuits By Mr.yasser science.
ELECTRICAL CIRCUITS All you need to be an inventor is a good imagination and a pile of junk. -Thomas Edison.
INTRODUCTION TO ELECTRIC CIRCUITS All you need to be an inventor is a good imagination and a pile of junk. -Thomas Edison What we’ll cover today: 3 characteristics.
ELECTRICAL CIRCUITS All you need to be an inventor is a good imagination and a pile of junk. -Thomas Edison.
ELECTRICAL CIRCUITS.
ELECTRICAL CIRCUITS All you need to be an inventor is a good imagination and a pile of junk. -Thomas Edison.
How to Work Electrical Circuits
Circuits, Current and Voltage
Circuits, Current and Voltage
ELECTRICAL CIRCUITS All you need to be an inventor is a good imagination and a pile of junk. -Thomas Edison.
ELECTRICAL CIRCUITS S.MORRIS 2006
ELECTRICAL CIRCUITS All you need to be an inventor is a good imagination and a pile of junk. -Thomas Edison.
ELECTRICAL Currents & Energy
ELECTRICAL CIRCUITS All you need to be an inventor is a good imagination and a pile of junk. -Thomas Edison.
ELECTRICAL CIRCUITS All you need to be an inventor is a good imagination and a pile of junk. -Thomas Edison.
ELECTRICAL CIRCUITS S.MORRIS 2006
Electrical Circuits.
ELECTRICAL CIRCUITS All you need to be an inventor is a good imagination and a pile of junk. -Thomas Edison.
ELECTRICAL CIRCUITS All you need to be an inventor is a good imagination and a pile of junk. -Thomas Edison Lesson Objectives: To explain the difference.
Electrical Circuits.
ELECTRICAL Currents & Energy
ELECTRICAL CIRCUITS WALT - Explain how electrons flow through a circuit S.MORRIS 2006 More free powerpoints at
ELECTRICAL CIRCUITS S.MORRIS 2006
Circuits.
ELECTRICAL CIRCUITS S.MORRIS 2006
ELECTRICAL CIRCUITS S.MORRIS 2006
ELECTRICAL CIRCUITS All you need to be an inventor is a good imagination and a pile of junk. -Thomas Edison.
REVIEW of Static electricity
ELECTRICAL CIRCUITS All you need to be an inventor is a good imagination and a pile of junk. -Thomas Edison.
ELECTRICAL CIRCUITS S.MORRIS 2006
ELECTRICAL CIRCUITS All you need to be an inventor is a good imagination and a pile of junk. -Thomas Edison.
ELECTRICAL CIRCUITS All you need to be an inventor is a good imagination and a pile of junk. -Thomas Edison.
ELECTRICAL CIRCUITS All you need to be an inventor is a good imagination and a pile of junk. -Thomas Edison.
ELECTRICAL CIRCUITS All you need to be an inventor is a good imagination and a pile of junk. -Thomas Edison.
Title: 2/28 ELECTRICAL CIRCUITS
Components of an Electrical Circuit
ELECTRICAL CIRCUITS.
ELECTRICAL CIRCUITS S.MORRIS 2006
ELECTRICAL CIRCUITS More free powerpoints at
ELECTRICAL CIRCUITS All you need to be an inventor is a good imagination and a pile of junk. -Thomas Edison.
ELECTRICAL CIRCUITS S.MORRIS 2006
ELECTRICAL CIRCUITS S.MORRIS 2006
ELECTRICAL CIRCUITS All you need to be an inventor is a good imagination and a pile of junk. -Thomas Edison.
Presentation transcript:

Ohm’s Law V = I x R Georg Simon Ohm ( ) I= Current (Amperes or amps) V= Voltage (Volts) R= Resistance (ohms)

How you should be thinking about electric circuits: Voltage: a force that pushes the current through the circuit (in this picture it would be equivalent to gravity)

Voltage Situations Which is voltage would be associated with which picture?  1 V  100 V

Resistance: friction that impedes flow of current through the circuit (rocks in the river) How you should be thinking about electric circuits:

Current: the actual “substance” that is flowing through the wires of the circuit (electrons!) How you should be thinking about electric circuits:

Current Situations Which is the current that would be associated with which picture?  1 A  100 A

What Affects Resistance? Wire length increases the resistance  Longer the wire, the more resistance Cross-sectional area  The thinner the wire, the greater the resistance Type of material used  Nichrome is a metal alloy with a high resistance

Would This Work?

The Central Concept: Closed Circuit

Circuit in Diagram Form _ + battery bulb In a closed circuit, current flows around the loop Current flowing through the filament makes it glow. No Loop  No Current  No Light current electrons flow opposite the indicated current direction! (repelled by negative terminal)

circuit diagram cellswitchlampwires Scientists usually draw electric circuits using symbols;

Simple Circuits Series circuit  All in a row –1 path for electricity  1 light goes out and the circuit is broken Parallel circuit –Many paths for electricity  1 light goes out and the others stay on

The current remains the same. The total resistance drops in a parallel circuit as more bulbs are added The current increases.

Series and Parallel Circuits Series Circuits  only one end of each component is connected  e.g. Christmas tree lights Parallel Circuits  both ends of a component are connected  e.g. household lighting

The current decreases because the resistance increases. Ohm’s Law says that I=V/R. The voltage in the system is constant, resistance increases

measuring current Electric current is measured in amps (A) using an ammeter connected in series in the circuit. A

measuring current A A This is how we draw an ammeter in a circuit. SERIES CIRCUIT PARALLEL CIRCUIT

measuring current SERIES CIRCUIT PARALLEL CIRCUIT current is the same at all points in the circuit. 2A current is shared between the components 2A 1A

copy the following circuits and fill in the missing ammeter readings. ? ? 4A 3A? ? 1A ? 3A 1A

measuring voltage The ‘electrical push’ which the cell gives to the current is called the voltage. It is measured in volts (V) on a voltmeter V

Different cells produce different voltages. The bigger the voltage supplied by the cell, the bigger the current. measuring voltage Unlike an ammeter, a voltmeter is connected across the components Scientist usually use the term Potential Difference (pd) when they talk about voltage.

measuring voltage V This is how we draw a voltmeter in a circuit. SERIES CIRCUITPARALLEL CIRCUIT V

V measuring voltage V V V

series circuit 1.5V voltage is shared between the components 1.5V 3V

voltage is the same in all parts of the circuit. 3V parallel circuit 3V

measuring current & voltage copy the following circuits on the next two slides. complete the missing current and voltage readings. remember the rules for current and voltage in series and parallel circuits.

measuring current & voltage V V 6V 4A A A a)

measuring current & voltage V V 6V 4A A A A b)

answers 3V 6V 4A 6V 4A 2A 4A a)b)

OHM’s LAW Measure the current and voltage across each circuit. Use Ohm’s Law to compute resistance Series Circuit VoltageCurrentResistance SharedSameIncreases VoltageCurrentResistance SameSharedDecreases Parallel Circuit