Strong and Electroweak Matter 2004. Helsinki, 16-19 June. Angel Gómez Nicola Universidad Complutense Madrid.

Slides:



Advertisements
Similar presentations
1 Signals of Quark-Gluon Plasma production J. Magnin CBPF.
Advertisements

23 Jun. 2010Kenji Morita, GSI / XQCD20101 Mass shift of charmonium near QCD phase transition and its implication to relativistic heavy ion collisions Kenji.
QCD – from the vacuum to high temperature an analytical approach.
José A. Oller Univ. Murcia, Spain Radiative  Decays and Scalar Dynamics José A. Oller Univ. Murcia, Spain Introduction Chiral Unitary Approach Scalar.
The speed of sound in a magnetized hot Quark-Gluon-Plasma Based on: Neda Sadooghi Department of Physics Sharif University of Technology Tehran-Iran.
Measuring initial temperature through Photon to dilepton ratio Collaborators: Jan-e Alam, Sourav Sarkar & Bikash Sinha Variable Energy Cyclotron Centre,
QCD – from the vacuum to high temperature an analytical approach an analytical approach.
1. Introduction 2.     3.  p    n 4.     5.     A   A 6. Discussion 7. Summary Bosen Workshop 2007 Review on.
Excitation of the Roper Resonance in Single- and Double-Pion Production in NN collisions Roper‘s resonance Roper‘s resonance a resonance without seeing.
Theoretical study of e+e-  PP' and the new resonance X(2175) M. Napsuciale Universidad de Guanajuato E. Oset, K. Sasaki, C. A. Vaquera Araujo, S. Gómez.
6 June KLH Electromagnetic Probes of Hot and Dense Matter1 The  Puzzle EM Probes of Hot and Dense Matter ECT, Trento, Italy 3-10 June 2005 Kevin.
Finite Size Effects on Dilepton Properties in Relativistic Heavy Ion Collisions Trent Strong, Texas A&M University Advisors: Dr. Ralf Rapp, Dr. Hendrik.
Marcus Bleicher, CCAST- Workshop 2004 Strangeness Dynamics and Transverse Pressure in HIC Marcus Bleicher Institut für Theoretische Physik Goethe Universität.
QCD Phase Diagram from Finite Energy Sum Rules Alejandro Ayala Instituto de Ciencias Nucleares, UNAM (In collaboration with A. Bashir, C. Domínguez, E.
Generalities of the approaches for extraction of N* electrocouplings at high Q 2 Modeling of resonant / non resonant contributions is needed and should.
Understanding the QGP through Spectral Functions and Euclidean Correlators BNL April 2008 Angel Gómez Nicola Universidad Complutense Madrid IN MEDIUM LIGHT.
In-medium hadrons and chiral symmetry G. Chanfray, IPN Lyon, IN2P3/CNRS, Université Lyon I The Physics of High Baryon Density IPHC Strasbourg, september.
The  process in nuclei and the restoration of chiral symmetry 1.Campaign of measurements of the  process in N and A 2.The CHAOS spectrometer.
Exclusive Production of Hadron Pairs in Two-Photon Interactions Bertrand Echenard University of Geneva on behalf of the LEP collaborations Hadronic Physics.
Exploring Real-time Functions on the Lattice with Inverse Propagator and Self-Energy Masakiyo Kitazawa (Osaka U.) 22/Sep./2011 Lunch BNL.
Study of hadron properties in cold nuclear matter with HADES Pavel Tlustý, Nuclear Physics Institute, Řež, Czech Republic for the HADES Collaboration ,
QED at Finite Temperature and Constant Magnetic Field: The Standard Model of Electroweak Interaction at Finite Temperature and Strong Magnetic Field Neda.
T BB Hadronic matter Quark-Gluon Plasma Chiral symmetry broken Chiral symmetry restored Early universe A new view and on the QCD phase diagram Recent.
Chiral Symmetry Restoration and Deconfinement in QCD at Finite Temperature M. Loewe Pontificia Universidad Católica de Chile Montpellier, July 2012.
Chiral condensate in nuclear matter beyond linear density using chiral Ward identity S.Goda (Kyoto Univ.) D.Jido ( YITP ) 12th International Workshop on.
Eigo Shintani (KEK) (JLQCD Collaboration) KEKPH0712, Dec. 12, 2007.
1 Search for the Effects of the QCD Color Factor in High-Energy Collisions at RHIC Bedanga Mohanty LBNL  Motivation  Color Factors  Search for Color.
N* Production in α-p and p-p Scattering (Study of the Breathing Mode of the Nucleon) Investigation of the Scalar Structure of baryons (related to strong.
Chiral phase transition and chemical freeze out Chiral phase transition and chemical freeze out.
Ignasi Rosell Universidad CEU Cardenal Herrera 2007 Determining chiral couplings at NLO: and JHEP 0408 (2004) 042 [hep-ph/ ] JHEP 0701 (2007)
Masayasu Harada (Nagoya Univ.) based on M.H. and C.Sasaki, Phys.Rev.D74:114006,2006 at Chiral 07 (Osaka, November 14, 2007) see also M.H. and K.Yamawaki,
II Russian-Spanish Congress “Particle and Nuclear Physics at all scales and Cosmology”, Saint Petersburg, Oct. 4, 2013 RECENT ADVANCES IN THE BOTTOM-UP.
Electromagnetic N →  (1232) Transition Shin Nan Yang Department of Physics National Taiwan University Lattice QCD Journal Club, NTU, April 20, 2007 Pascalutsa,
Masayasu Harada (Nagoya Univ.) based on (mainly) M.H. and K.Yamawaki, Phys. Rev. Lett. 86, 757 (2001) M.H. and C.Sasaki, Phys. Lett. B 537, 280 (2002)
How To See the Quark-Gluon Plasma
Nucleon Polarizabilities: Theory and Experiments
Modification of nucleon spectral function in the nuclear medium from QCD sum rules Collaborators: Philipp Gubler(ECT*), Makoto Oka Tokyo Institute of Technology.
Masayasu Harada (Nagoya 理論センター研究会 「原子核・ハドロン物 理」 (August 11, 2009) based on M.H. and C.Sasaki, arXiv: M.H., C.Sasaki and W.Weise, Phys.
Quark spectrum near chiral and color-superconducting phase transitions Masakiyo Kitazawa Kyoto Univ. M.K., T.Koide, T.Kunihiro and Y.Nemoto, PRD70,
1 Chemical freezeout curve from heavy ion data coincides with freezeout T at RHIC and SPC J. Stachel & P. Braun- Munzinger.
* Collaborators: A. Pich, J. Portolés (Valencia, España), P. Roig (UNAM, México) Daniel Gómez Dumm * IFLP (CONICET) – Dpto. de Física, Fac. de Ciencias.
And Mesons in Strange Hadronic Medium at Finite Temperature and Density Rahul Chhabra (Ph.D student) Department Of Physics NIT Jalandhar India In cooperation.
School of Collective Dynamics in High-Energy CollisionsLevente Molnar, Purdue University 1 Effect of resonance decays on the extracted kinetic freeze-out.
XXXI Bienal de la RSEF, Granada, España, septiembre Angel Gómez Nicola Universidad Complutense Madrid COEFICIENTES DE TRANSPORTE EN UN GAS.
Exotic baryon resonances in the chiral dynamics Tetsuo Hyodo a a RCNP, Osaka b ECT* c IFIC, Valencia d Barcelona Univ. 2003, December 9th A.Hosaka a, D.
May 18, 2006Hot Quarks Unturned Stones for Electromagnetic Probes of Hot and Dense Matter Kevin L. Haglin St. Cloud State University, Minnesota,
Integrating out Holographic QCD Models to Hidden Local Symmetry Masayasu Harada (Nagoya University) Dense strange nuclei and compressed baryonic matter.
Strange Probes of QCD Matter Huan Zhong Huang Department of Physics and Astronomy University of California Los Angeles, CA Oct 6-10, 2008; SQM2008.
Can a R  T be a renormalizable theory ? J.J. Sanz-Cillero Can a resonance chiral theory be a renormalizable theory ? J.J. Sanz-Cillero (Peking U.)
ANALYTIC APPROACH TO CONSTRUCTING EFFECTIVE THEORY OF STRONG INTERACTIONS AND ITS APPLICATION TO PION-NUCLEON SCATTERING A.N.Safronov Institute of Nuclear.
Departamento de Física Teórica II. Universidad Complutense de Madrid José R. Peláez ON THE NATURE OF THE LIGHT SCALAR NONET FROM UNITARIZED CHIRAL PERTURBATION.
Beijing, QNP091 Matthias F.M. Lutz (GSI) and Madeleine Soyeur (Saclay) Irfu/SPhN CEA/ Saclay Irfu/SPhN CEA/ Saclay Dynamics of strong and radiative decays.
05/23/14Lijuan Ruan (BNL), Quark Matter The low and intermediate mass dilepton and photon results Outline: Introduction New results on dileptons.
1 Recent Results on J/  Decays Shuangshi FANG Representing BES Collaboration Institute of High Energy Physics, CAS International Conference on QCD and.
What have we learned from the RHIC experiments so far ? Berndt Mueller (Duke University) KPS Meeting Seoul, 22 April 2005.
QCHS 2010 Lei Zhang1 Lei Zhang (on behalf of BESIII Collaboration) Physics School of Nanjing University Recent.
1 NJL model at finite temperature and chemical potential in dimensional regularization T. Fujihara, T. Inagaki, D. Kimura : Hiroshima Univ.. Alexander.
Denis Parganlija (Frankfurt U.) Finite-Temperature QCD Workshop, IST Lisbon Non-Strange and Strange Scalar Quarkonia Denis Parganlija In collaboration.
Deconfinement and chiral transition in finite temperature lattice QCD Péter Petreczky Deconfinement and chiral symmetry restoration are expected to happen.
H. Kamano , M. Morishita , M. Arima ( Osaka City Univ. )
Chiral Extrapolations of light resonances
Enhanced non-qqbar and non-glueball Nc behavior of light scalar mesons
Photoproduction of K* for the study of L(1405)
Mesons in medium and QCD sum rule with dim 6 operators
National Taiwan University
QCD (Quantum ChromoDynamics)
有限密度・ 温度におけるハドロンの性質の変化
The Operator Product Expansion Beyond Perturbation Theory in QCD
B. El-Bennich, A. Furman, R. Kamiński, L. Leśniak, B. Loiseau
Pion transition form factor in the light front quark model
Presentation transcript:

Strong and Electroweak Matter Helsinki, June. Angel Gómez Nicola Universidad Complutense Madrid

Motivation T>0 ChPT pion electromagnetic form factors Thermal  and  poles Motivation

After QGP hadronization and  SB, the description of the meson gas must rely on Chiral Perturbation Theory (model independent, chiral power counting p,T << 1 GeV ) Only NGB mesons (and photons) involved. L 2 loops are O(p 2 ), divergences absorbed in L 4 and so on. L2L2 L4L4 L22L22 L6L6 Derivative and mass expansion nonlinear  -model S.Weinberg, ‘79 J.Gasser&H.Leutwyler ’84,’85

point towards Chiral Symmetry Restoration: J.Gasser&H.Leutwyler ‘87 P.Gerber&H.Leutwyler ‘89 A.Bochkarev&J.Kapusta ‘96 A.Dobado, J.R.Peláez ’99 ’01. T T=0 T

J.L.Goity&H.Leutwyler, ‘89 A.Schenk, ‘93 R.Pisarski&M.Tytgat, ‘96 D.Toublan, ‘97 J.M.Martinez Resco&M.A.Valle, ‘98 Pion dispersion law: Nonequilibrium ChPT: f  (t),  amplification via parametric resonance. AGN ‘01

However, ChPT alone cannot reproduce the light resonances ( , ,...) Needed to explain observed phenomena in RHIC. K.Kajantie et al ’96 C.Gale, J.Kapusta ’87 ‘91 G.Q.Li,C.M.Ko,G.E.Brown ‘95 H.J.Schulze, D.Blaschke ‘96,’03 V.L.Eletsky et al ‘01 Enhancement consistent with a dropping M  and a significant broadening    in the hadron gas at freeze-out.

CHIRAL SYMMETRY BREAKING UNITARITY + Inverse Amplitude Method “Thermal” poles Dynamically generated (no explicit resonance fields) OUR APPROACH AGN, F.J.Llanes-Estrada, J.R.Peláez PLB550, 55 (2002), hep-ph/ A.Dobado, AGN, F.J.Llanes-Estrada, J.R.Peláez, PRC66, (2002)  scattering amplitude and  form factors in T > 0 SU(2) ChPT

Motivation T>0 ChPT pion electromagnetic form factors Thermal  and  poles T>0 ChPT pion electromagnetic form factors

Pion form factors enter directly in the dilepton rate: In the central region the dominant channel is pion annihilation:    e+e+ e-e-    e+e+ e-e-  ~+... (thermal equilibrium)

At T>0 a more general structure is allowed: k = p 1 - p 2 S = p 1 + p 2 ChPT to O(p 4 ) (At T = 0, F t (S 2 )= F s (S 2 ), G s = 0) Related by gauge invariance to  dispersion law in hot matter

T  0 limit (J.Gasser&H.Leutwyler 1984). Gauge invariance condition.Thermal perturbative unitarity in the c.o.m. frame (see later) T>0 ChPT calculation to O(p 4 ): L 2 one loop L 4 tree level (including renormalization)

Model independent ! Confirms Dominguez et al ’94 (QCD sum rules) The pion electromagnetic charge radius at T>0 (rough) deconfinement estimate: Charge screening Kapusta

H.A.Weldon ’92 Enhancement Absorption Thermal perturbative unitarity: Likewise, for the thermal amplitude: Consider c.om. frame (, back to back dileptons) 2  thermal phase space: (1+n B ) 2  n B 2 I=J=1  scattering partial wave 1 to lowest order

Motivation T>0 ChPT pion electromagnetic form factors Thermal  and  poles

Excellent T=0 data description up to 1 GeV energies and resonance generation as s poles in the complex amplitude. T.N.Truong, ‘88 A.Dobado, M.J.Herrero,T.N.Truong, ‘90 A.Dobado&J.R.Peláez, ’93,’97 J.A.Oller, E.Oset, J.R.Peláez, ’99 A.Dobado, M.J.Herrero, E.Ruiz Morales ‘00 AGN&J.R.Peláez ‘02 Unitarization: The Inverse Amplitude Method Exact unitarity at T>0 + ChPT matching at low energies Valid to O(n B ) (only 2  thermal states, dilute gas).

SU(2) L 4 constants from T=0 fit of phase shifts:  (770)  Thermal  and  poles I=J=0I=J=1 2n B (M  /2)  0.3 Consistent with Chiral Symmetry Restoration: : M   M   m  (m  (T) much softer)    first by phase space but decreases as M   m  suppresses    2  decay. (similar results to T.Hatsuda, T.Kunihiro et al, ’98,’00 ) * Small M  change at low T (VMD*). Further decrease consistent with phenomenological estimates and observed behaviour (STAR  ) * M.Dey, V.L.Eletsky&B.L.Ioffe, 1990 Significant  broadening as required by dilepton data.

The unitarized form factor Peak reduction and spreading around M  compatible with dilepton spectrum (n B contributions alone overestimate data) and other calculations including explicitly resonances under VMD assumption (C.Song and V.Koch, ’96) m  = MeV f  = 92.4 MeV (T=0 form factor fit)

Chiral Perturbation Theory provides model-independent predictions for meson gas properties. In one-loop ChPT, we have calculated scattering amplitudes and the two independent form factors, checking gauge invariance and thermal unitarity. The electromagnetic pion radius grows for T>100 MeV, favouring a deconfinement temperature T c ~200 MeV. Imposing unitarity in SU(2) allows to describe the thermal  and  poles in the amplitudes and form factors. Our results show a clear increase of   (T) and a slow M  (T) reduction consistently with theoretical and experimental analysis, including dilepton data.   (T) and M  (T) behave according to Chiral Symmetry Restoration. Angular dependence, plasma expansion,  +  -    e + e , baryon density, hadronic photon spectrum,...

 VMD coupling For s  M T 2,  T <<  T and a  at rest: (Breit-Wigner) IAM + Thermal Unitarity (expected very low-T behaviour:  T  only by phase space increase) M T  M 0 R T  R 0 With our calculated a (4) (s;  ) Higher T  T,M T, R T corrections  and  thermal poles for s   (appropriate analytic structure)

T-dependence of the phase shifts: Temperature enhances the interaction strength in all channels  11 gives the  tail  Compatible with             at low T The enhancement is dominated by phase space  T (  SR,T.Hatsuda et al) (not a strong | a 00 | enhancement near threshold) H.A.Weldon, 1983 M.Dey, V.L.Eletsky&B.L.Ioffe, 1990 C.Gale&J.Kapusta, 1991 R.D.Pisarski, 1995 VMD prediction

From the IAM poles  (770)  Not a BW ! From the IAM I=J=1 phase shift shape SU(2) L 4 constants from T=0 fit: M 0 = 770 MeV  0 = 159 MeV Consistent with Chiral Symmetry Restoration: : M   M   m  (m  (T) much softer, A.Schenk, 1993 )    at first by  T but decreases as M   m  disallows    2  decay. (similar results to T.Hatsuda, T.Kunihiro et al )

2n B (M  /2)  0.3 M T decrease consistent with phenomenological analysis Little M T change at low T, as predicted by VMD Effective VMD  vertex (g 0  6.2). Expected low T behaviour (C.Song&V.Koch 1996). Significant deviations from pure thermal phase space broadening as T increases

m  = MeV f  = 92.4 MeV (T=0 fit)