1 Chapter 10: Introduction to Inference. 2 Inference Inference is the statistical process by which we use information collected from a sample to infer.

Slides:



Advertisements
Similar presentations
Our goal is to assess the evidence provided by the data in favor of some claim about the population. Section 6.2Tests of Significance.
Advertisements

Business Statistics for Managerial Decision
Chapter 9 Hypothesis Testing.
Copyright (c) 2004 Brooks/Cole, a division of Thomson Learning, Inc. Chapter 8 Tests of Hypotheses Based on a Single Sample.
INFERENTIAL STATISTICS – Samples are only estimates of the population – Sample statistics will be slightly off from the true values of its population’s.
McGraw-Hill/IrwinCopyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved. Chapter 9 Hypothesis Testing.
Overview Definition Hypothesis
Section 9.1 Introduction to Statistical Tests 9.1 / 1 Hypothesis testing is used to make decisions concerning the value of a parameter.
Inference in practice BPS chapter 16 © 2006 W.H. Freeman and Company.
Lesson 11 - R Review of Testing a Claim. Objectives Explain the logic of significance testing. List and explain the differences between a null hypothesis.
More About Significance Tests
+ Chapter 9 Summary. + Section 9.1 Significance Tests: The Basics After this section, you should be able to… STATE correct hypotheses for a significance.
CHAPTER 16: Inference in Practice. Chapter 16 Concepts 2  Conditions for Inference in Practice  Cautions About Confidence Intervals  Cautions About.
Significance Tests: THE BASICS Could it happen by chance alone?
Essential Statistics Chapter 131 Introduction to Inference.
10.2 Tests of Significance Use confidence intervals when the goal is to estimate the population parameter If the goal is to.
+ The Practice of Statistics, 4 th edition – For AP* STARNES, YATES, MOORE Unit 5: Hypothesis Testing.
Confidence intervals are one of the two most common types of statistical inference. Use a confidence interval when your goal is to estimate a population.
The Practice of Statistics Third Edition Chapter 10: Estimating with Confidence Copyright © 2008 by W. H. Freeman & Company Daniel S. Yates.
Hypotheses tests for means
CHAPTER 17: Tests of Significance: The Basics
Chapter 9 Fundamentals of Hypothesis Testing: One-Sample Tests.
CHAPTER 9 Testing a Claim
Significance Test A claim is made. Is the claim true? Is the claim false?
Introduction to Inferece BPS chapter 14 © 2010 W.H. Freeman and Company.
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. Chapter 8 Hypothesis Testing.
Statistics 101 Chapter 10 Section 2. How to run a significance test Step 1: Identify the population of interest and the parameter you want to draw conclusions.
Introduction to the Practice of Statistics Fifth Edition Chapter 6: Introduction to Inference Copyright © 2005 by W. H. Freeman and Company David S. Moore.
Statistical Significance The power of ALPHA. “ Significant ” in the statistical sense does not mean “ important. ” It means simply “ not likely to happen.
Ch 10 – Intro To Inference 10.1: Estimating with Confidence 10.2 Tests of Significance 10.3 Making Sense of Statistical Significance 10.4 Inference as.
CHAPTER 15: Tests of Significance The Basics ESSENTIAL STATISTICS Second Edition David S. Moore, William I. Notz, and Michael A. Fligner Lecture Presentation.
CHAPTER 9 Testing a Claim
BPS - 3rd Ed. Chapter 141 Tests of significance: the basics.
Fall 2002Biostat Statistical Inference - Confidence Intervals General (1 -  ) Confidence Intervals: a random interval that will include a fixed.
Chap 8-1 Fundamentals of Hypothesis Testing: One-Sample Tests.
Lecture PowerPoint Slides Basic Practice of Statistics 7 th Edition.
Chapter 9: Hypothesis Tests Based on a Single Sample 1.
1 Chapter 9: Introduction to Inference. 2 Thumbtack Activity Toss your thumbtack in the air and record whether it lands either point up (U) or point down.
AP Statistics Section 11.1 B More on Significance Tests.
BPS - 5th Ed. Chapter 151 Thinking about Inference.
Business Statistics for Managerial Decision Farideh Dehkordi-Vakil.
© Copyright McGraw-Hill 2004
Chapter 9 Day 2 Tests About a Population Proportion.
Statistical Inference Drawing conclusions (“to infer”) about a population based upon data from a sample. Drawing conclusions (“to infer”) about a population.
1 Chapter 2: The Normal Distribution 2.1Density Curves and the Normal Distributions 2.2Standard Normal Calculations.
AP Statistics Chapter 11 Notes. Significance Test & Hypothesis Significance test: a formal procedure for comparing observed data with a hypothesis whose.
Statistical Inference Statistical inference is concerned with the use of sample data to make inferences about unknown population parameters. For example,
A significance test or hypothesis test is a procedure for comparing our data with a hypothesis whose truth we want to assess. The hypothesis is usually.
+ The Practice of Statistics, 4 th edition – For AP* STARNES, YATES, MOORE Unit 5: Hypothesis Testing.
Tests of Significance: Stating Hypothesis; Testing Population Mean.
The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers CHAPTER 9 Testing a Claim 9.2 Tests About a Population.
10.1 – Estimating with Confidence. Recall: The Law of Large Numbers says the sample mean from a large SRS will be close to the unknown population mean.
Uncertainty and confidence Although the sample mean,, is a unique number for any particular sample, if you pick a different sample you will probably get.
The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers CHAPTER 9 Testing a Claim 9.1 Significance Tests:
CHAPTER 15: Tests of Significance The Basics ESSENTIAL STATISTICS Second Edition David S. Moore, William I. Notz, and Michael A. Fligner Lecture Presentation.
10.1 Estimating with Confidence Chapter 10 Introduction to Inference.
The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers CHAPTER 9 Testing a Claim 9.1 Significance Tests:
Chapter 9 Introduction to the t Statistic
+ Homework 9.1:1-8, 21 & 22 Reading Guide 9.2 Section 9.1 Significance Tests: The Basics.
CHAPTER 9 Testing a Claim
Unit 5: Hypothesis Testing
CHAPTER 9 Testing a Claim
CHAPTER 9 Testing a Claim
CHAPTER 9 Testing a Claim
Significance Tests: The Basics
CHAPTER 9 Testing a Claim
CHAPTER 9 Testing a Claim
Chapter 9: Significance Testing
CHAPTER 9 Testing a Claim
CHAPTER 9 Testing a Claim
Presentation transcript:

1 Chapter 10: Introduction to Inference

2 Inference Inference is the statistical process by which we use information collected from a sample to infer something about the population of interest. Two main types of inference: Interval estimation (Section 10.1) Tests of significance (“hypothesis testing”) (Section 10.2)

3 Constructing Confidence Intervals Activity 10, pp Interpretation of 95% C.I., p. 535 If the sampling distribution is approximately normal, then the rule tells us that about 95% of all p-hat values will be within two standard deviations of p (upon repeated samplings). If p-hat is within two standard deviations of p, then p is within two standard deviations of p-hat. So about 95% of the time, the confidence interval will contain the true population parameter p.

4 Internet Demonstration, C.I. main.asp?s=00020&n=99000&i= &v=category&o=&ns =0&uid=0&rau=0 main.asp?s=00020&n=99000&i= &v=category&o=&ns =0&uid=0&rau=0

5 Interpretation of 95% CI (This is the one you should commit to memory!) 95% of all confidence intervals constructed in the same manner will capture the true population parameter. 5% of the confidence intervals created will not capture the population parameter.

6 Caveat Complex statistical inference procedures are worthless without good data! When using statistical inference, we are acting as if the data are a random sample or come from a randomized experiment.

7 Homework Careful reading, pp

8 Writing, 3-5 minutes: Explain what we did with the thumbtack problem in constructing a confidence interval. How did we do it? What is the point of constructing confidence intervals? How do we interpret our confidence interval? What does “95% confidence” mean? Key words: Parameter, sample, statistic, repeated sampling

9 Example 10.2, p. 537 See bulleted list, p. 538 Assume we know σ. In practice, this is almost never the case! We use this assumption as a means for slowly introducing the ideas of statistical inference.

10 Example 10.2 (Figure 10.3)

11 Example 10.2 (Figure 10.4)

12 Interpretation of 95% confidence interval: “I am 95% confident that the percentage of men … is between 54% and 60%. Ok, so what does that mean?! 95% of all confidence intervals constructed in the same manner (SRS, same n) will contain the population parameter. 5% of the time the CI constructed will not contain the population parameter of interest. We will be wrong 5% of the time.

13 Exercises 10.1, 10.2, and 10.3, p. 542 Know exact wording for confidence interval interpretations!

14 Conditions for Constructing a Confidence Interval for Estimating a Mean (µ) The data come from an SRS from the population of interest; and The sampling distribution of x-bar is approximately normal. When can we be confident that this is the case? If the original (underlying) distribution is normal, then it does not matter what sample size you use. If we do not know about the underlying distribution, or if we know that it is not normal, the Central Limit Theorem tells us that if n is large enough, the sampling distribution will be normal. n > 25 or 30 guarantees it.

15 Inference Toolbox for Confidence Intervals, p. 548 Step 1: Identify the population of interest and the parameter we want to draw conclusions about. Step 2: Choose the appropriate inference procedure. Verify the conditions for using the selected procedure! Step 3: Carry out the inference procedure: For confidence intervals: CI = estimate ± margin of error Step 4: Interpret our results in the context of the problem.

16 Practice Exercises: 10.5, p , p. 549

17 Assessing Normality Suppose that we obtain a simple random sample from a population whose distribution is unknown. Many of the statistical tests that we perform on small data sets (sample size less than 25-30) require that the population from which the sample is drawn be normally distributed. One way we can assess whether the sample is drawn from a normally-distributed population is to draw a histogram and observe its shape. What should it look like? What other ways can we assess whether we have drawn a sample from a normally-distributed population?

18 Assessing Normality, cont. This method works well for large data sets, but the shape of a histogram drawn from a small sample of observations does not always accurately represent the shape of the population. For this reason, we need additional methods for assessing the normality of a random variable when we are looking at sample data. The normal probability plot is used most often to assess the normality of a population from which a sample was drawn.

19 Normal Probability Plots (pp in your text) A normal probability plot shows observed data versus normal scores. A normal score is the expected Z-score of the data value if the distribution of the random variable is normal. The expected Z-score of an observed value will depend upon the number of observations in the data set. See Example 2.12, p. 106 for details. If sample data is taken from a population that is normally distributed, a normal probability plot of the actual values versus the expected Z-scores will be approximately linear. In drawing the straight line, you should be influenced more by the points near the middle of the plot than by the extreme points.

20 From Chapter 9, Sampling Distributions

21 Example 10.4, p. 544

22 Computing exact confidence intervals for other than 95%

23 How Confidence Intervals Behave Problem 10.10, p. 551 Bulleted list, pp Margin of error: z*σ/sqrt n What happens as our confidence level increases? What happens as our standard deviation changes? What happens as we increase sample size, n?

24 Choosing Sample Size Box, p. 552 Exercise 10.12, p. 552

25 Cautions Page 553

26 Practice/HW Exercises, pp : 10.19, 10.20, 10.22, 10.24

27 Confidence Intervals with the Calculator Try problem with your calculator.

Tests of Significance One of the most useful and common types of statistical inference. Goal: To assess the evidence provided by data about some claim concerning a population of interest.

29 Performing a Test of Significance Let’s begin with Exercise 10.27, p. 564 We’ll tie it all together over the next few days, but we’ll get started with a complete problem. Steps: Identify the population and parameter of interest State Null and Alternate Hypotheses. Sketch distribution with point of interest. Perform the significance test, including finding the appropriate p-value. Draw conclusions based upon your level of significance (alpha, α).

30 Terms Null hypothesis (p. 565) No effect or no change in the population Alternative hypothesis There is an effect or change. P-value (p. 567) The probability that the observed outcome would take a value as extreme or more extreme than that actually observed. Alpha (α) A set level for rejecting the null hypothesis. Compare to the p-value obtained.

31 Exercise 10.33, p. 569 Part (b): “If the P-value is as small or smaller than alpha, we reject the null hypothesis, significant at level alpha.” Box, p. 569

32 Example 10.9, p. 560

33 Figure 10.10, p. 562

34 Could our result have occurred by chance? What is the probability that we could have obtained a sample average (x-bar) of 1.02 if the population parameter were really 0?

35 Homework Reading in 10.2 through p. 583 Problems: 10.28, p , p , p. 569

36 Stating Hypotheses One-sided test: We are interested only in deviations from the null hypothesis in one direction. Two-sided test: We just want to know if we have a difference, which could be in either direction (high or low). Exercises , p. 567

37 Inference Toolbox for Significance Tests, p. 571 Step 1: Identify the population of interest and the parameter we want to draw conclusions about. State Null and Alternative Hypotheses. Step 2: Choose the appropriate inference procedure. Verify the conditions for using the selected procedure! Step 3: Carry out the inference procedure: For tests of significance: Calculate the test statistic and find the p-value. Step 4: Interpret our results in the context of the problem.

38 Inference Toolbox, cont. Step 2: Choose the appropriate inference procedure. Verify the conditions for using the selected procedure! SRS, normal sampling distribution Step 3: Carry out the inference procedure: For tests of significance: Calculate the test statistic and find the P-value. P-value: describes how strong the case is against H o, because it is the probability of getting an outcome as extreme or more extreme than the actually observed outcome.

39 Inference Toolbox, cont. Step 4: Interpret our results in the context of the problem. Compare the p-value with a fixed value that we regard as decisive. This fixed value is called the significance level, alpha (α). If the P-value is as small or smaller than alpha, we reject the null and have statistical significance at level α.

40 Example 10.13, p. 573 Two-tailed test. Note in step 3 the doubling of probabilities to get the correct P-value for a two-tailed test.

41

42 Example 10.13, cont.

43 Practice Exercise 10.38, p. 576 Follow the Inference Toolbox. After doing this by hand, let’s see how it looks on the calculator.

44 Homework Reading through p. 583 Exercises: and 10.37, p , p. 576

45 Performing a 2-sided significance test with a C.I. If the null hypothesis mean falls outside of the 1-α Confidence Interval, we can reject the null hypothesis. Example 10.17, p. 581 Practice problem, 10.44, p. 582

46 Tests with fixed significance levels In the old days of significance testing (also called hypothesis testing), we always compared our p-value to a fixed level of alpha. This is not so any more, though we still use alpha as a way to guide our decisions. ***The p-value is the smallest level alpha at which we would reject the null hypothesis and make our conclusion based upon the alternative hypothesis.

47 Problems 10.81, p , p. 583 For tonight: Reading through end of 10.2! 10.2 Quiz tomorrow

48 Errors in significance testing Is it possible that we will make the wrong decision with our significance test?

49 Errors, cont. Types of Error: Type I: Rejecting the null hypothesis (H o ) when in fact it is true. The probability of making a Type I error is exactly alpha. Type II: Failing to reject an incorrect null hypothesis. A little more effort is required to calculate the probability of making a Type II error.

50 Power (p. 599) Definition: Probability of rejecting a false null hypothesis, given a specific alternate. A high probability of a Type II error for a particular alternative means that the test is not sensitive enough to usually detect the alternative. We have low POWER in this instance. The power of a test against any alternative is 1 minus P(Type II error) for that alternative.

51 Example 10.21, p. 595 Note: P(Type I error)—light shaded area. P(Type II error)—dark shaded area.

52 Example 10.21, cont. If the sampling distribution from this example is narrower, what happens to the probability of making a Type II error? How do we get a narrower sampling distribution?

53 Type II Error and Power Exercise 10.69, parts a-d, p. 599

54 Power, cont. Increasing the power (p. 601): Increase alpha. Consider an alternative that is farther away from the null hypothesis mean. Increase the sample size. Decrease σ. Which one(s) do you think is (are) most controllable?

55 Homework Exercise 10.66, p. 598 Chapter 10 test on Tuesday