* Dong-Hyawn Kim: Graduate Student, KAIST Ju-Won Oh: Professor, Hannam University Ju-Won Oh: Professor, Hannam University In-Won Lee: Professor, KAIST.

Slides:



Advertisements
Similar presentations
Chapter 4: Basic Properties of Feedback
Advertisements

Scissor-Jack-Damper System for Reduction of Stay Cable
MR 유체 감쇠기를 이용한 사장교의 지진응답 제어 기법
Manipulator Dynamics Amirkabir University of Technology Computer Engineering & Information Technology Department.
사장교의 지진 응답 제어를 위한 납고무 받침의 설계 기준 제안
Finite Element Method in Geotechnical Engineering
SIMULINK Dr. Samir Al-Amer. SIMULINK SIMULINK is a power simulation program that comes with MATLAB Used to simulate wide range of dynamical systems To.
Fractional Order LQR for Optimal Control of Civil Structures Abdollah Shafieezadeh*, Keri Ryan*, YangQuan Chen+ *Civil and Environmental Engineering Dept.
Solution of Eigenproblem of Non-Proportional Damping Systems by Lanczos Method In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics.
Quake Summit 2012 July 9-12, 2012, Boston
Implementation of adaptive control algorithm based on SPOC form
Comparative Study on Performances of Various Semiactive Control Algorithms for Stay Cables 2004 년도 강구조공학회 학술발표대회 2004 년 6 월 5 일 장지은, 한국과학기술원 건설 및 환경공학과.
CABLE-STAYED BRIDGE SEISMIC ANALYSIS USING ARTIFICIAL ACCELEROGRAMS
Cheng Chen Ph.D., Assistant Professor School of Engineering San Francisco State University Probabilistic Reliability Analysis of Real-Time Hybrid Simulation.
A Shaft Sensorless Control for PMSM Using Direct Neural Network Adaptive Observer Authors: Guo Qingding Luo Ruifu Wang Limei IEEE IECON 22 nd International.
Structural Dynamics & Vibration Control Lab 1 December Department of Civil & Environmental Engineering K orea A dvanced I nstitute of S cience.
Yeong-Jong Moon*: Graduate Student, KAIST, Korea Kang-Min Choi: Graduate Student, KAIST, Korea Hyun-Woo Lim: Graduate Student, KAIST, Korea Jong-Heon Lee:
정형조, 세종대학교 토목환경공학과 조교수 최강민, 한국과학기술원 건설 및 환경공학과 박사과정 지한록, 한국과학기술원 건설 및 환경공학과 석사과정 고만기, 공주대학교 토목환경공학과 교수 이인원, 한국과학기술원 건설 및 환경공학과 교수 2005 년 한국강구조학회 학술발표회.
조상원 * : 박사과정, 한국과학기술원 건설환경공학과 조상원 * : 박사과정, 한국과학기술원 건설환경공학과 정형조 : 교수, 세종대학교 토목환경공학과 정형조 : 교수, 세종대학교 토목환경공학과 박선규 : 교수, 성균관대학교 토목공학과 박선규 : 교수, 성균관대학교 토목공학과.
Wavelet Analysis and Its Applications for Structural Health Monitoring and Reliability Analysis Zhikun Hou Worcester Polytechnic Institute and Mohammad.
Sang-Won Cho* : Ph.D. Student, KAIST Sang-Won Cho* : Ph.D. Student, KAIST Dong-Hyawn Kim: Senior Researcher, KORDI Dong-Hyawn Kim: Senior Researcher, KORDI.
1 지진하중을 받는 구조물의 MR 댐퍼의 동특성을 고려한 반능동 신경망제어 Heon-Jae Lee 1), Hyung-Jo Jung 2), Ju-Won Oh 3), In-Won Lee 4) 1) Graduate Student, Dept. of Civil and Environmental.
Cheng Chen, Ph.D. Assistant Professor San Francisco State University Interpreting Reliability of Real- Time Hybrid Simulation Results from Actuator Tracking.
1 Efficient Mode Superposition Methods for Non-Classically Damped System Sang-Won Cho, Graduate Student, KAIST, Korea Ju-Won Oh, Professor, Hannam University,
In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced.
Structural Dynamics & Vibration Control Lab. 1 Kang-Min Choi, Ph.D. Candidate, KAIST, Korea Jung-Hyun Hong, Graduate Student, KAIST, Korea Ji-Seong Jo,
Progress in identification of damping: Energy-based method with incomplete and noisy data Marco Prandina University of Liverpool.
Part II: Model Class Selection Given: Dynamic data from system and set of candidate model classes where each model class defines a set of possible predictive.
Hyung-Jo Jung Sejong University, Korea Hyung-Jo Jung Sejong University, Korea Kang-Min Choi Korea Advanced Inst. of Science and Tech. Kang-Min Choi Korea.
케이블 진동 감쇠를 위한 반능동 제어 장치 성능의 실험적 평가
* 김 만철, 정 형조, 박 선규, 이 인원 * 김 만철, 정 형조, 박 선규, 이 인원 구조동역학 및 진동제어 연구실 구조동역학 및 진동제어 연구실 한국과학기술원 토목공학과 중복 또는 근접 고유치를 갖는 비비례 감쇠 구조물의 자유진동 해석 1998 한국전산구조공학회 가을.
Computational Structural Engineering Institute Autumn Conference 2002 Oct , 2002 VIBRATION CONTROL OF BRIDGE FOR SERVICEABILITY Jun-Sik Ha 1),
Robust Hybrid Control of a Seismically Excited Cable-Stayed Bridge JSSI 10th Anniversary Symposium on Performance of Response Controlled Buildings Kyu-Sik.
Hong-Ki Jo 1), Man-Gi Ko 2) and * In-Won Lee 3) 1) Graduate Student, Dept. of Civil Engineering, KAIST 2) Professor, Dept. of Civil Engineering, Kongju.
Structural Dynamics & Vibration Control Lab., KAIST 1 Structural Vibration Control Using Semiactive Tuned Mass Damper Han-Rok Ji, Graduate Student, KAIST,
Structural Dynamics & Vibration Control Lab 1 Smart Passive System based on MR Damper for Benchmark Structural Control Problem for a Seismically Excited.
지진 하중을 받는 구조물의 능동 모달 퍼지 제어시스템
*Man-Cheol Kim, Hyung-Jo Jung and In-Won Lee *Man-Cheol Kim, Hyung-Jo Jung and In-Won Lee Structural Dynamics & Vibration Control Lab. Structural Dynamics.
CONTENTS Introduction Semi-Active Control Proposed Control Algorithm
조상원 * : 박사과정, 한국과학기술원 건설환경공학과 조상원 * : 박사과정, 한국과학기술원 건설환경공학과 정형조 : 교수, 세종대학교 토목환경공학과 정형조 : 교수, 세종대학교 토목환경공학과 이종헌 : 교수, 경일대학교 토목공학과 이종헌 : 교수, 경일대학교 토목공학과.
Structural Dynamics & Vibration Control Lab., KAIST, Korea 1 A Comparative Study on Aseismic Performances of Base Isolation Systems for Multi-span Continuous.
Yeong-Jong Moon 1), Jong-Heon Lee 2) and In-Won Lee 3) 1) Graduate Student, Department of Civil Engineering, KAIST 2) Professor, Department of Civil Engineering,
Hybrid System Controlled by a  -Synthesis Method for a Seismically Excited Cable-Stayed Bridge 2004 추계 학술대회 소음진동분야 NRL 2 지진하중을 받는 사장교를 위한  - 합성법을 이용한.
MR 댐퍼를 기반으로 하는 스마트 수동제어 시스템 대한토목학회 정기 학술대회 2004 년 10 월 21 일 조상원 : KAIST 건설환경공학과, 박사 이헌재 : KAIST 건설환경공학과, 박사과정 오주원 : 한남대학교 토목환경공학과, 교수 이인원 : KAIST 건설환경공학과,
1 Artificial Neural Networks for Structural Vibration Control Ju-Tae Kim: Graduate Student, KAIST, Korea Ju-Won Oh: Professor, Hannam University, Korea.
* 김동현 : KAIST 토목공학과, 박사후연구원 오주원 : 한남대학교 토목환경공학과, 교수 오주원 : 한남대학교 토목환경공학과, 교수 이규원 : 전북대학교 토목환경공학과, 교수 이규원 : 전북대학교 토목환경공학과, 교수 이인원 : KAIST 토목공학과, 교수 이인원 :
* In-Won Lee 1), Sun-Kyu Park 2) and Hong-Ki Jo 3) 1) Professor, Department of Civil Engineering, KAIST 2) Professor, Department of Civil Engineering,
The Asian-Pacific Symposium on Structural Reliability and its Applications Seoul, Korea, August 18-20, 2004 Kyu-Sik Park Kyu-Sik Park, Ph. D. Candidate,
Structural Dynamics & Vibration Control Lab. 1 모달 퍼지 이론을 이용한 지진하중을 받는 구조물의 능동제어 최강민, 한국과학기술원 건설 및 환경공학과 조상원, 한국과학기술원 건설 및 환경공학과 오주원, 한남대학교 토목공학과 이인원, 한국과학기술원.
모달변위를 이용한 지진하중을 받는 구조물의 능동 신경망제어 2004 년도 한국전산구조공학회 춘계 학술발표회 국민대학교 2004 년 4 월 10 일 이헌재, 한국과학기술원 건설및환경공학과 박사과정 정형조, 세종대학교 토목환경공학과 조교수 이종헌, 경일대학교 토목공학과 교수.
Robust Analysis of a Hybrid System Controlled by a  -Synthesis Method Kyu-Sik Park, Post Doctoral Researcher, UIUC, USA Hyung-Jo Jung, Assistant Professor,
Kyu-Sik Park Kyu-Sik Park, Graduate Student, KAIST, Korea Hyung-Jo Jung Hyung-Jo Jung, Research Assistant Professor, KAIST, Korea In-Won Lee In-Won Lee,
1 지진시 구조물의 지능제어 기법 Intelligent Control of Structures under Earthquakes 김동현 : 한국과학기술원 토목공학과, 박사과정 이규원 : 전북대학교 토목공학과, 교수 이종헌 : 경일대학교 토목공학과, 교수 이인원 : 한국과학기술원.
 - 합성법을 이용한 사장교의 지진응답 제어 년도 한국전산구조공학회 가을 학술발표회 박규식, 한국과학기술원 건설 및 환경공학과 박사후과정 정형조, 세종대학교 토목환경공학과 조교수 윤우현, 경원대학교 산업환경대학원 부교수 이인원, 한국과학기술원.
Kang-Min Choi, Kang-Min Choi, Graduate Student, KAIST, Korea Hyung-Jo Jung Hyung-Jo Jung, Professor, Sejong National University, Korea In-Won Lee In-Won.
Yeong-Jong Moon 1), Sun-Kyu Park Lee 2) and In-Won Lee 3) 1) Graduate Student, Department of Civil Engineering, KAIST 2) Professor, Department of Civil.
Smart Passive System Based on MR Damper JSSI 10 th Anniversary Symposium on Performance of Response Controlled Buildings Nov , Yokohama Japan.
Sang-Won Cho* : Ph.D. Candidate, KAIST Sang-Won Cho* : Ph.D. Candidate, KAIST Byoung-Wan : Ph.D. Candidate, KAIST Byoung-Wan : Ph.D. Candidate, KAIST Hyung-Jo.
HYBRID SYSTEM CONTROLLED BY A  -SYNTHESIS METHOD International Symposium on Earthquake Engineering Commemorating 10 th Anniversary of the 1995 Kobe Earthquake.
Dynamic Analysis of Structures by
OSE801 Engineering System Identification Spring 2010
VIBRATION CONTROL OF STRUCTURE USING CMAC
Modal Control for Seismically Excited Structures using MR Damper
KAIST-Kyoto Univ. Joint Seminar
반능동 MR 유체 감쇠기를 이용한 지진하중을 받는 구조물의 신경망제어 이헌재, 한국과학기술원 건설환경공학과 석사과정
Implementation of Modal Control for
Modified Sturm Sequence Property for Damped Systems
A Survey on State Feedback AMD Control
한국지진공학회 추계학술발표회 IMPROVED SENSITIVITY METHOD FOR NATURAL FREQUENCY AND MODE SHAPE OF DAMPED SYSTEM Hong-Ki Jo1), *Man-Gi Ko2) and In-Won Lee3) 1) Graduate.
Modified Modal Methods in Asymmetric Systems
Presentation transcript:

* Dong-Hyawn Kim: Graduate Student, KAIST Ju-Won Oh: Professor, Hannam University Ju-Won Oh: Professor, Hannam University In-Won Lee: Professor, KAIST In-Won Lee: Professor, KAIST Kyu-Hong Shim: Postdoctoral Researcher, KAIST Kyu-Hong Shim: Postdoctoral Researcher, KAIST STRUCTURAL CONTROL USING CMAC NEURAL NETWORK Nha Trang 2000 Nha Trang, Vietnam, Aug , 2000

1 Structural Dynamics & Vibration Control Lab., KAIST, Korea 1 INTRODUCTION 2 CMAC FOR VIBRATION CONTROL 3 NUMERICAL EXAMPLES 4 CONCLUSIONS CONTENTS

2 Structural Dynamics & Vibration Control Lab., KAIST, Korea 1 INTRODUCTION - mathematical model is not required in designing controller Features of neural network control Background Application areas - control of structures with uncertainty or nonlinearity

3 Structural Dynamics & Vibration Control Lab., KAIST, Korea structure external load neural network sensor Structural control using neural network

4 Structural Dynamics & Vibration Control Lab., KAIST, Korea Multilayer neural network (MLNN) training is too slow control force state of structure weights to be adjusted

5 Structural Dynamics & Vibration Control Lab., KAIST, Korea 1) H. M. Chen et al. (1995). ASCE J. Comp. in Civil Eng. 2) J. Ghaboussi et al. (1995). ASCE J. Eng. Mech. 3) K. Nikzad et al. (1996). ASCE J. Eng. Mech. 4) K. Bani-Hani et al. (1998). ASCE J. Eng. Mech. 5) J. T. Kim et al. (2000). ASCE J. Eng. Mech. Previous studies - All methods are based on multilayer neural network whose learning speed is too slow - A new neural network with fast learning speed is required

6 Structural Dynamics & Vibration Control Lab., KAIST, Korea Objective and Scope - apply CMAC * neural network to structural control to reduce learning time. - compare performance of CMAC with multilayer neural network. * Cerebellar Model Articulation Controller

7 Structural Dynamics & Vibration Control Lab., KAIST, Korea Introduction 2 CMAC FOR VIBRATION CONTROL - proposed by J. S. Albus(1975) - a neural network with fast learning speed - mainly used for manipulator control CMAC

8 Structural Dynamics & Vibration Control Lab., KAIST, Korea input space output space x  memory space W1W1 W2W2 W3W3 W n-1 WnWn   u u Procedure of CMAC weight displacement velocity control signal

9 Structural Dynamics & Vibration Control Lab., KAIST, Korea x2x2 x1x1 W 13 W 14 W 15 W 16 W 9 W 10 W 11 W 12 W 5 W 6 W 7 W 8 W 1 W 2 W 3 W 4 x1x1 x2x2 (quantization mesh) Block quantization of input space W 37 W 38 W 39 W 40 W 41 W 32 W 33 W 34 W 35 W 36 W 27 W 28 W 29 W 30 W 31 W 22 W 23 W 24 W 25 W 26 W 17 W 18 W 19 W 20 W 21 (made by shifting left mesh) block size shifting

10 Structural Dynamics & Vibration Control Lab., KAIST, Korea x2x2 x1x1 W 13 W 14 W 15 W 16 W 9 W 10 W 11 W 12 W 5 W 6 W 7 W 8 W 1 W 2 W 3 W 4 x1x1 x2x2 1st mesh Activation of weights-(1) W 37 W 38 W 39 W 40 W 41 W 32 W 33 W 34 W 35 W 36 W 27 W 28 W 29 W 30 W 31 W 22 W 23 W 24 W 25 W 26 W 17 W 18 W 19 W 20 W 21 x1*x1* x2*x2* x1*x1* x2*x2* 2nd mesh input: [x 1 *, x 2 * ] T output:[ W 11 + W 34 ]

11 Structural Dynamics & Vibration Control Lab., KAIST, Korea x2x2 x1x1 W 13 W 14 W 15 W 16 W 9 W 10 W 11 W 12 W 5 W 6 W 7 W 8 W 1 W 2 W 3 W 4 x1x1 x2x2 Activation of weights-(2) W 37 W 38 W 39 W 40 W 41 W 32 W 33 W 34 W 35 W 36 W 27 W 28 W 29 W 30 W 31 W 22 W 23 W 24 W 25 W 26 W 17 W 18 W 19 W 20 W 21 x1x1 ^ x2x2 ^ x1x1 ^ x2x2 ^ input: [, ] T x1x1 ^ x2x2 ^ output:[ W 11 + W 30 ] x2*x2* x1*x1* x1*x1* x2*x2* 1st mesh2nd mesh

12 Structural Dynamics & Vibration Control Lab., KAIST, Korea Weights [W 11, W 34 ] [W 11, W 30 ] no. of meshes: 2 Output Summary no. of weights: 41 no. of division: 4, 5/variable Input [x 1 *, x 2 * ] T x1x1 ^ x2x2 ^ [, ] T

13 Structural Dynamics & Vibration Control Lab., KAIST, Korea CMAC MLNN memory size Large Small learning speed Fast Slow computing mode Local Global CMAC vs. MLNN items real-time applicationFeasible Impossible

14 Structural Dynamics & Vibration Control Lab., KAIST, Korea Vibration Control using CMAC structure external load CMAC learning rule sensor

15 Structural Dynamics & Vibration Control Lab., KAIST, Korea Control criterion: cost function (1) : state, control vector : relative weighting matrix : time step : final time step

16 Structural Dynamics & Vibration Control Lab., KAIST, Korea : learning rate (2) (3) (5) Learning rule (4)

17 Structural Dynamics & Vibration Control Lab., KAIST, Korea 3. NUMERICAL EXAMPLES Model structure Three-story building with Active Mass Driver

18 Structural Dynamics & Vibration Control Lab., KAIST, Korea : Mass matrix : Damping matrix : Restoring force : Location vector : displacement vector : ground acceleration : control force (6) Equation of motion

19 Structural Dynamics & Vibration Control Lab., KAIST, Korea : linear stiffness : contribution of k 0 Nonlinear restoring force (Bouc-Wen, 1981) (7) (8)

20 Structural Dynamics & Vibration Control Lab., KAIST, Korea mass pump Active Mass Driver (AMD) piston

21 Structural Dynamics & Vibration Control Lab., KAIST, Korea mass : 200kg (story) stiffness : 2.25  10 5 N/m(inter-story) damping : 0.6, 0.7, 0.3% (modal) mass : 18kg (3% of building mass) stiffness : 3.71  10 3 N/m damper : 8.65% Structure AMD Parameters

22 Structural Dynamics & Vibration Control Lab., KAIST, Korea CMAC structure input: 2 (disp., vel. of 3rd floor) output: 1 (control signal) no. of division: 3/variable no. of meshes: 200 no. of weights: 1800

23 Structural Dynamics & Vibration Control Lab., KAIST, Korea integration time: 0.25msec sampling time: 5.0msec delay time: 0.5msec Simulation

24 Structural Dynamics & Vibration Control Lab., KAIST, Korea Learning during El Centro earthquake (linear case) ※ 1 Epoch = 0.005sec × 2000 steps CMAC MLNN

25 Structural Dynamics & Vibration Control Lab., KAIST, Korea Minimum costs neural network J min (ratio) MLNN 1.77  (1.00) CMAC 1.94  (1.09) Epochs neural network epoch (ratio) MLNN 478 (1.00) CMAC 65 (0.14)

26 Structural Dynamics & Vibration Control Lab., KAIST, Korea Displacement (m) w/o control w/ control Time (sec) Northridge earthquake (3 rd floor) Velocity(m/sec)

27 Structural Dynamics & Vibration Control Lab., KAIST, Korea Acceleration (m/sec 2 ) w/o control w/ control Time (sec) Northridge earthquake (3 rd floor) - continued

28 Structural Dynamics & Vibration Control Lab., KAIST, Korea Kern County earthquake (3 rd floor) Time (sec) Displacement (m) w/o control w/ control Velocity(m/sec)

29 Structural Dynamics & Vibration Control Lab., KAIST, Korea Acceleration (m/sec 2 ) w/o control w/ control Time (sec) Kern County earthquake (3 rd floor) - continued

30 Structural Dynamics & Vibration Control Lab., KAIST, Korea Learning during El Centro earthquake (nonlinear case, ) CMAC MLNN

31 Structural Dynamics & Vibration Control Lab., KAIST, Korea Minimum costs neural network J min (ratio) MLNN 1.91  (1.00) CMAC 2.02  (1.06) Epochs neural network epoch (ratio) MLNN 484 (1.00) CMAC 34 (0.07)

32 Structural Dynamics & Vibration Control Lab., KAIST, Korea w/o controlw/ control Northridge earthquake (1 st floor)

33 Structural Dynamics & Vibration Control Lab., KAIST, Korea Kern County earthquake (1 st floor) w/o controlw/ control

34 Structural Dynamics & Vibration Control Lab., KAIST, Korea Performance comparison (El Centro, 3 rd floor) CMAC MLNN Displacement (m) Time (sec)

35 Structural Dynamics & Vibration Control Lab., KAIST, Korea 4. CONCLUSIONS Response controlled by CMAC is almost same as that by MLNN. Learning speed of CMAC is much faster than that of MLNN.

36 Structural Dynamics & Vibration Control Lab., KAIST, Korea Thank you for your attention.

37 Structural Dynamics & Vibration Control Lab., KAIST, Korea : oil flow rate : control signal : time constant : valve gains Pump dynamics (9)

38 Structural Dynamics & Vibration Control Lab., KAIST, Korea : displacement of ram : area of ram : compression coefficient : volume of cylinder : leakage coefficient Piston dynamics (10)

39 Structural Dynamics & Vibration Control Lab., KAIST, Korea : state vector : control force vector : system matrix : control matrix (s-1) Sensitivity Evaluation State equation

40 Structural Dynamics & Vibration Control Lab., KAIST, Korea (s-2) (s-3) (s-4) : sampling time (s-5) Discretized equation using ZOH Sensitivity matrix

41 Structural Dynamics & Vibration Control Lab., KAIST, Korea initial condition: loading condition: measurement: (s-6) (s-7) (s-8) (s-9) Computation of H

42 Structural Dynamics & Vibration Control Lab., KAIST, Korea Method Time Emulator minutes ~ hours Proposed m sampling time Evaluation time (s-10)

43 Structural Dynamics & Vibration Control Lab., KAIST, Korea (c-1) (c-2) (c-3) (c-4) (c-5) Convergence of learning rule

44 Structural Dynamics & Vibration Control Lab., KAIST, Korea (c-6) (c-7) (c-8) (c-9) Inserting (3), (4) into (2)