Photodetection EDIT EDIT 2011N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. Renker 1 Photodetection Principles, Performance and Limitations.

Slides:



Advertisements
Similar presentations
Corfu 10/9/07 ( HTRA: ~ 100 ms -- 1μs ) - To develop the most promising technologies for HTRA - Assess relative strengths/areas of application in astronomy.
Advertisements

USE OF GEANT4 FOR LHCB RICH SIMULATION S. Easo, RAL, LHCB AND ITS RICH DETECTORS. TESTBEAM DATA FOR LHCB-RICH. OVERVIEW OF GEANT4 SIMULATION.
Introduction Secondary electron secondary electron detector The electron beam interaction with near surface specimen atoms will make a signal which results.
Photomultipliers. Measuring Light Radiant Measurement Flux (W) Energy (J) Irradiance (W/m 2 ) Emittance (W/m 2 ) Intensity (W/sr) Radiance (W/sr m 2 )
The Multi-Pixel Photon Counter for the GLD Calorimeter Readout Jul Satoru Uozumi University of Tsukuba, Japan 1.Introduction 2.Recent.
X-ray Astronomy Lee Yacobi Selected Topics in Astrophysics July 9.
Optical image tube with Medipix readout
Fiberless Coupled Tiles for a High Granularity Scintillator-SiPM Calorimeter Rick Salcido Northern Illinois University November 14, 2009 Prairie Section.
Assisi – 23 June 2005 Tito Bellunato 1 Status of the LHCb RICH detector and the HPD Beauty 2005 Assisi – 23 June 2005 Tito Bellunato – Università degli.
Scintillation + Photo Detection
Calorimeter Electronics Jim Pilcher 11-Dec December 11, 2008J. Pilcher2 Introduction Calorimeters essential for energy measurement in particle physics.
Fiber-Optic Communications
Mid-IR photon counting array using HgCdTe APDs and the Medipix2 ROIC
Medipix2 meeting Dec Medipix Activity at Berkeley John Vallerga, Jason McPhate, Anton Tremsin and Bettina Mikulec.
C. Joram CERN / PH International Scoping Study CERN Meeting September Development of spherical HPDs for a Water Cherenkov Detector (initiated by.
High Energy Detection. High Energy Spectrum High energy EM radiation:  (nm)E (eV) Soft x-rays X-rays K Soft gamma rays M Hard gamma.
10 Picosecond Timing Workshop 28 April PLANACON MCP-PMT for use in Ultra-High Speed Applications.
Lens ALens B Avg. Angular Resolution Best Angular Resolution (deg) Worst Angular Resolution (deg) Image Surface Area (mm 2 )
Photon detection Visible or near-visible wavelengths
Tanja Horn, CUA PHYS 575/675 Modern Detectors Phys 575/675, Spring 2012 Tools of High Energy and Nuclear Physics Detection of Individual Elementary Particles.
References Hans Kuzmany : Solid State Spectroscopy (Springer) Chap 5 S.M. Sze: Physics of semiconductor devices (Wiley) Chap 13 PHOTODETECTORS Detection.
Peter Križan, Ljubljana March 17, 2006 Super B Workshop, Frascati Peter Križan University of Ljubljana and J. Stefan Institute Aerogel RICH and TOP: summary.
Position Sensitive SiPMs for Ring Imaging Cherenkov Counters C.Woody BNL January 17, 2012.
Fast Detectors for Medical and Particle Physics Applications Wilfried Vogel Hamamatsu Photonics France March 8, 2007.
May 31, 2008 SuperB PID sessionMarko Starič, Ljubljana Marko Starič J. Stefan Institute, Ljubljana Report on hardware tests and MC studies in Ljubljana.
Experimental set-up Abstract Modeling of processes in the MCP PMT Timing and Cross-Talk Properties of BURLE Multi-Channel MCP PMTs S.Korpar a,b, R.Dolenec.
Detector development and physics studies in high energy physics experiments Shashikant Dugad Department of High Energy Physics Review, 3-9 Jan 2008.
Photodetection EDIT EDIT 2011 N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. Renker 1 Micro Channel plate PMT (MCP-PMT) Similar to ordinary.
HPD Performance in the RICH Detectors of the LHCb Young Min Kim University of Edinburgh IoP HEPP Conference – April
D. Renker, PSI International Workshop on new photon-detectors, Kobe, 6/27/2007 Photo Detectors in High Energy Physics Dieter Renker.
Photodetection EDIT Internal photoelectric effect in Si Band gap (T=300K) = 1.12 eV (~1100 nm) More than 1 photoelectron can be created by light in silicon.
Light Calibration System (LCS) Temperature & Voltage Dependence Option 2: Optical system Option 2: LED driver Calibration of the Hadronic Calorimeter Prototype.
Photodetection EDIT Photodetection Principles, Performance and Limitations Nicoleta Dinu (LAL Orsay) Thierry Gys (CERN) Christian Joram (CERN) Samo Korpar.
Experimental set-up for on the bench tests Abstract Modeling of processes in the MCP PMT Timing and Cross-Talk Properties of BURLE/Photonis Multi-Channel.
Design and optimization of Electromagnetic particle Detectors (EDs) in LHAASO-KM2A Xiangdong Sheng, Jia Liu, Jing Zhao on behalf of the LHAASO collaboration.
Development of the RICH Detectors in LHCb S. Easo Rutherford-Appleton Laboratory June 5, 2002 RICH2002 PYLOS, GREECE For the LHCb-RICH Group.
Performance of the LHCb RICH detectors On behalf of the LHCb-RICH Collaboration Sajan Easo Rutherford-Appleton Laboratory IEEE-NSS: Dresden, Germany,
work for PID in Novosibirsk E.A.Kravchenko Budker INP, Novosibirsk.
Development of TOP counter for Super B factory K. Inami (Nagoya university) 2007/10/ th International Workshop on Ring Imaging Cherenkov Counters.
C. Joram CERN / PH EIROforum School on Instrumentation ESI 2009 Photon Detection 1 Focus on particle/astroparticle physics Christian Joram (CERN / PH)
1 Wojciech Dulinski Pixel 2000, Genova, Italy Pixel Sensors for Single Photon Detection Contents - Idea and basic architecture.
R Lambert, LHCb RICHPD07, 28th June The LHCb Pixel Hybrid Photon Detectors Robert W. Lambert, University of Edinburgh On behalf of the LHCb RICH.
The RICH Detectors of the LHCb Experiment Carmelo D’Ambrosio (CERN) on behalf of the LHCb RICH Collaboration LHCb RICH1 and RICH2 The photon detector:
Prospects to Use Silicon Photomultipliers for the Astroparticle Physics Experiments EUSO and MAGIC A. Nepomuk Otte Max-Planck-Institut für Physik München.
C. D’Ambrosio, T. Gys, C. Joram, M. Moll and L. Ropelewski CERN – PH/DT2 3b Photo-detection CERN Academic Training Programme 2004/2005 Particle Detectors.
Photo-detection EDIT EDIT 2011Single photon counting measurements with an HPD – T. GysSlide 1 Single photon counting measurements with a hybrid photon.
October 2002Sienna, JL. Faure, DAPNIA/SPP In 8th Topical Seminar on Innovative Particle and Radiation Detectors Jean-louis Faure CEA-DAPNIA-SPP Progress.
Particle Identification with the LHCb Experiment
Photodetection EDIT EDIT 2011 N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. Renker 1 Requirements on photodetectors 1.Sensitivity 2.Linearity.
1 Plannar Active Absorber Calorimeter Adam Para, Niki Saoulidou, Hans Wenzel, Shin-Shan Yu Fermialb Tianchi Zhao University of Washington ACFA Meeting.
Lecture 12  Last Week Summary  Sources of Image Degradation  Quality Control  The Sinogram  Introduction to Image Processing.
Photodetection EDIT Photodetection Principles, Performance and Limitations Nicoleta Dinu (LAL Orsay) Thierry Gys (CERN) Christian Joram (CERN) Samo Korpar.
The Multi-Pixel Photon Counter for the GLD Calorimeter Readout Jul Satoru Uozumi University of Tsukuba, Japan for the GLD Calorimeter.
The RICH detectors of LHCb and the proposed upgrade Antonis Papanestis On behalf of the LHCb RICH collaboration 1.
23/02/07G. Vidal-Sitjes, VCI2007 Vienna Conference on Instrumentation1 The LHCb RICH detector G. Vidal-Sitjes on behalf of the LHCb RICH team Outline:
TORCH – a Cherenkov based Time-of- Flight Detector Euan N. Cowie on behalf of the TORCH collaboration E N Cowie - TORCH - TIPP June 2014.
K.Wyllie, CERNIWORID 2004 Readout of the LHCb pixel hybrid photon detectors Ken Wyllie on behalf of the LHCb collaboration and industrial partners The.
Matthias Hoek Institut für Kernphysik Next Generation Cherenkov Counters* *For Accelerator Experiments 52. International Winter Meeting on Nuclear Physics.
1 Development of a Large Area Photodetector with a Fast Phosphor Anode Toru Iijima Kobayashi-Maskawa Institute Nagoya University Open Meeting for the Hyper-Kamiokande.
Topic Report Photodetector and CCD
Scintillation Detectors in High Energy Physics
Idee per lo sviluppo del Charge Identifier
Particle Identification in LHCb
The Pixel Hybrid Photon Detectors of the LHCb RICH
Multianode Photo Multipliers for Ring Imaging Cherenkov Detectors
Silicon pixel detectors and electronics for hybrid photon detectors
Particle Identification with the LHCb Experiment
Photomultiplier (PMT) Tubes
PbWO4 Cherenkov light contribution to Hamamatsu S8148 and Zinc Sulfide–Silicon avalanche photodiodes signals F. KOCAK, I. TAPAN Department of Physics,
Presentation transcript:

Photodetection EDIT EDIT 2011N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. Renker 1 Photodetection Principles, Performance and Limitations Nicoleta Dinu (LAL Orsay) Thierry Gys (CERN) Christian Joram (CERN) Samo Korpar (JSI Ljubljana) Yuri Musienko (Northwestern U, USA) Veronique Puill (LAL, Orsay) Dieter Renker (TU Munich) 1

Photodetection EDIT EDIT 2011N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. Renker 2 OUTLINE Basics Requirements on photodetectors Photosensitive materials ‘Family tree’ of photodetectors Detector types Applications

Photodetection EDIT EDIT 2011N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. Renker 3 Basics 1.Photoelectric effect 2.Solids, liquids, gaseous materials 3.Internal vs. external photoeffect, electron affinity 4.Photodetection as a multi-step process 5.The human eye as a photodetector

Photodetection EDIT EDIT 2011N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. Renker 4 Formatting guidelines for preparing slides Use Calibri as default font Default color: white (avoid text in red, difficult to read for many people) Main title: 24 pts Normal text: 16 pts References: 10 pts

Photodetection EDIT EDIT 2011N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. Renker 5

Photodetection EDIT EDIT 2011N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. Renker 6 Energy loss eV th in (thin) ohmic contact Hybrid Photon Detectors (HPD’s) – Basic Principles Combination of vacuum photon detectors and solid-state technology; Input: collection lens, (active) optical window, photo-cathode; Gain: achieved in one step by energy dissipation of keV pe’s in solid-state detector anode; this results in low gain fluctuations; Output: direct electronic signal; Encapsulation in the tube implies: compatibility with high vacuum technology (low outgassing, high T° bake- out cycles); internal (for speed and fine segmentation) or external connectivity to read-out electronics; heat dissipation issues; VV (C.A. Johansen et al., NIM A 326 (1993) ) Optical input window n+ n p Photon Photoelectron Typical stopping range 3-5  m

Photodetection EDIT EDIT 2011N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. Renker 7 Photo-emission from photo-cathode; Photo-electron acceleration to DV  kV; Energy dissipation through ionization and phonons (W Si =3.6eV to generate 1 e-h pair in Si) with low fluctuations (Fano factor F  0.12 in Si); Gain M: Intrinsic gain fluctuations  M :  dominated by electronics Example:  V = 20kV  M  5000 and  M  25 suited for single photon detection with high resolution; (C.P. Datema et al., NIM A 387 (1997) ) Background from electron back-scattering at Si surface 1 pe 2 pe 3 pe 4 pe 6 pe 7 pe 5 pe Energy resolution of HPD’s - Basic Properties

Photodetection EDIT EDIT 2011N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. Renker 8 ( CMSdetectorInfo/CMShcal.html) (P. Cushman et al., NIM A 504 (2003) 502) Possible cross-talks ( CMSdetectorInfo/CMShcal.html) Multi-pixel proximity-focussed HPD – CMS HCAL B=4T  proximity-focussing with 3.35mm gap and HV=10kV; Minimize cross-talks: – pe back-scattering: align with B; – capacitive: Al layer coating; – internal light reflections: a-Si:H AR coating = 520nm (WLS fibres); Results in linear response over a large dynamic range from minimum ionizing particles (muons) up to 3 TeV hadron showers;

Photodetection EDIT EDIT 2011N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. Renker 9 DEP-LHCb development: Multi-alkali photo-cathode; Commercial anode with 61 2mm-pixels; vacuum feed-throughs to external analog (VA2) readout electronics; Proximity-focussing electron optics; Poor intrinsic active area coverage (~50%); Single-diode cross-focussing Multi-pixel proximity-focussing (E. Albrecht et al., NIMA A 411 (1998) ) Single avalanche diode HPD (DEP-LAA) (DEP-LHCb) (Hamamatsu) 18mm  extra slide not shown (R. DeSalvo et al., NIMA A 315 (1992) ) Various kinds of commercial HPD’s

Photodetection EDIT EDIT 2011N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. Renker 10 DEP-LHCb development: Commercial anode; Cross-focussing electron optics (de- magnification by ~5); High intrinsic active area coverage (83%); Multi-pixel, cross-focussing (E. Albrecht et al., NIMA A 442 (2000) ) (DEP-LHCb) 72mm  extra slide not shown Various kinds of commercial HPD’s

Photodetection EDIT EDIT 2011N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. Renker 11 Object illuminance: 0.1lx EBCCD proximity-focussed Commercial 2/3” CCD Hamamatsu N7640 EB-CCD (Hamamatsu) Electron-bombarded CCD (EBCCD) extra slide not shown

Photodetection EDIT EDIT 2011N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. Renker 12 Am g source through a 2-hole lead collimator 1mm (F. Cindolo et al., IEEE TNS, Vol. 50, No. 1, February 2003, ) Cosmic muon track through 60  m  scintillating fibres (T. Gys et al., NIMA 355 (1995) ) 500  m  ISPA-tube – Pioneering Work on Pixel-HPD’s Imaging with Silicon Pixel Array: Pixel array sensor bump-bonded to binary electronic chip, originally developed for tracking (CERN-RD19); Flip-chip assembly encapsulated inside vacuum tube using standard parts, commercial ceramic carriers and packaging techniques; First ISPA prototype (1994) used to read small-diameter scintillating fibres developed for tracking (CERN-RD7); Spin-off applications for beta- and gamma-detection (quartz and YAP-crystal windows) extra slide not shown

Photodetection EDIT EDIT 2011N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. Renker 13 Industry-LHCb development: LHCb-dedicated pixel array sensor bump- bonded to binary electronic chip (in close collaboration with ALICE-ITS), specially- developed high T° bump-bonding; Flip-chip assembly encapsulated inside vacuum tube using full-custom ceramic carrier; (M. Moritz et al., IEEE TNS Vol. 51, No. 3, June 2004, ) 50mm Pixel-HPD anode 72mm  (K. Wyllie et al., NIMA 530 (2004) 82-86) Pixel-HPD’s for LHCb RICHes (M. Campbell et al., IEEE TNS Vol. 53, No. 4, August 2006, )

Photodetection EDIT EDIT 2011N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. Renker 14 RICH2 H X-section Upper RICH1 HPD plane Pixel-HPD’s for LHCb RICHes Single photon sensitivity over 200nm- 600nm (aerogel response and scattering, and chromatic dispersion in gases) Detection area of 3.3m 2 (500 HPD’s) with active area fraction of ~65% and position resolution 2.5mm (optimum of pixel vs chromatic vs emission point errors) Fast response for LHC bunch-crossing rate of 40MHz with good signal-to-noise ratio Radiation tolerant (3krad per year) LHCb data (preliminary) K ring in RICH1

Photodetection EDIT EDIT 2011N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. Renker 15 extra slide not shown (J. Vallerga et al., Proc. SPIE, vol (2004) ) Images of USAF test pattern, 100ms (left) and 100s (right) exposures, 50k MCP gain Hybrid MCP for adaptive optics (AO) Development of next-generation astronomical AO: Alternative to replace more conventional high-speed CCD’s; Aim for IR response, ultra-low noise and several kHz frame-rates; GaAs photo-cathode; Proximity-focussing electron optics; High-gain wide dynamic range MCP; Anode: Medipix2 photon-counting chip used both as direct electron detector (55mm pixels) and FE readout electronics;

Photodetection EDIT EDIT 2011N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. Renker 16 Non-exhaustive list: “Photomultiplier tubes, principles and applications”; A.H. Sommer, ”Photoemissive materials”, J. Wiley & Sons (1968); H. Bruining, “Physics and Applications of Secondary Electron Emission”, Pergamon Press (1954); I. P. Csorba, “Image Tubes”, Sams (1985); Proceedings of the triennial NDIP (New Developments in Photo-detection) Conference ( ), published in NIMA; Literature

Photodetection EDIT EDIT 2011N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. Renker 17 Applications 1.Readout of scintillators / fibres with PMT/MAPMT. 2.Readout of RICH detectors with HPD. 3.Readout of RICH detector with gas based detectors 4.Readout of inorganic crystals with APD. Example: CMS ECAL. 5.Readout of scintillators with G-APD. 6.Ultrafast timing for TOF with MCP-PMT