The Compressed Baryonic Matter Experiment at FAIR Outline:  Physics case  Feasibility studies and Detector R&D  Outlook Peter Senger Seoul, April 21,

Slides:



Advertisements
Similar presentations
The CBM experiment - exploring the QCD phase diagram at high net baryon densities - Claudia Höhne, GSI Darmstadt CBM collaboration The CBM experiment physics.
Advertisements

The Compressed Baryonic Matter (CBM) experiment at FAIR
The Physics of Dense Nuclear Matter
The Compressed Baryonic Matter Experiment at FAIR Outline:  Physics case  Detector requirements  Feasibility studies  Detector R&D  Outlook Peter.
Silicon Tracker for CBM Walter F.J. Müller, GSI, Darmstadt for the CBM Collaboration Topical Workshop: Advanced Instrumentation for Future Accelerator.
Hadron Physics (I3HP) activities Hadron Physics (I3HP) is part of Integrated Activity of 6’th European Framework. Contract has a form of consortium of.
Dielectrons from HADES to CBM Bratislava (SAS, PI), Catania (INFN - LNS), Cracow (Univ.), Darmstadt,(GSI), Dresden (FZR), Dubna (JINR), Frankfurt (Univ.),Giessen.
Open Charm Everard CORDIER (Heidelberg) Grako meeting HD, April 28, 2006Everard Cordier.
October-November 2003China - ALICE meeting1 PHOS in ALICE A PHOton Spectrometer with unique capabilities for the detection/identification of photons and.
Vector meson study for the CBM experiment at FAIR/GSI Anna Kiseleva GSI Germany, PNPI Russia   Motivation   The muon detection system of CBM   Vector.
INTRODUCTION One of the major experimental challenges of the Compressed Baryonic Matter (CBM) experiment is the measurement of the D-meson hadronic decay.
1 J.M. Heuser et al. CBM Silicon Tracker Requirements for the Silicon Tracking System of CBM Johann M. Heuser, M. Deveaux (GSI) C. Müntz, J. Stroth (University.
Di-electron pair reconstruction CBM Collaboration Meeting, 28 February 2008, GSI-Darmstadt Di-electron pair reconstruction Tetyana Galatyuk GSI-Darmstadt.
Development of a RICH detector for electron identification in CBM Claudia Höhne, GSI Darmstadt CBM collaboration Sixth Workshop on Ring Imaging Cherenkov.
Compressed baryonic matter - Experiments at GSI and at FAIR Outline: Probing dense baryonic matter (1-3 ρ 0 )  The nuclear equation-of-state  In medium.
Strange particles and neutron stars - experiments at GSI Outline: Probing dense baryonic matter (1-3 ρ 0 )  The nuclear equation-of-state  In medium.
Nucleus-nucleus collisions at the future facility in Darmstadt - Compressed Baryonic Matter at GSI Outline:  A future accelerator for intense beams of.
CBM at FAIR Walter F.J. Müller, GSI 5 th BMBF-JINR Workshop, January 2005.
Dec Heavy-ion Meeting ( 홍병식 ) 1 Introduction to CBM Contents - FAIR Project at GSI - CBM at FAIR - Discussion.
The CBM FAIR Volker Friese Gesellschaft für Schwerionenforschung Darmstadt  HI physics at intermediate beam energies  CBM detector concept.
Peter Senger Kolkata Feb. 05 Outline:  Facility of Antiproton and Ion Research  Physics motivation for CBM  Feasibility studies  Experiment layout.
1 Compressed Baryonic Matter at FAIR:JINR participation Hadron Structure 15, 29 th June- 3 th July, 2015 P. Kurilkin on behalf of CBM JINR group VBLHEP,
The Physics of CBM Volker Friese GSI Darmstadt CBM-China Workshop, Beijing, 2 November 2009.
Status of the CBM experiment V. Friese Gesellschaft für Schwerionenforschung Darmstadt, Germany for the CBM Collaboration.
Peter Senger The Compressed Baryonic Matter Experiment at FAIR Critical Point and the Onset of Deconfinement, Florence, July Outline:  The Facility.
The CBM experiment at FAIR Claudia Höhne, GSI Darmstadt CBM collaboration Outline motivation, physics case observables experiment feasibility studies dileptons:
In-Kwon YOO Pusan National University Busan, Republic of KOREA SPS Results Review.
CBM at FAIR Walter F.J. Müller, GSI, Darmstadt for the CBM collaboration 5 th International Conference on Physics and Astrophysics of Quark Gluon Plasma,
Charmonium feasibility study F. Guber, E. Karpechev, A.Kurepin, A. Maevskaia Institute for Nuclear Research RAS, Moscow CBM collaboration meeting 11 February.
Heavy flavour capabilities with the ALICE TRD Benjamin Dönigus ISNP 2008 Erice/Sicily.
Di-electron measurements with HADES at SIS100 Motivation Motivation HADES di-electron results (SIS 18) - summary HADES di-electron results (SIS 18) - summary.
ICPAGQP 2005, Kolkata Probing dense baryonic matter with time-like photons Dilepton spectroscopy from 1 to 40 AGeV at GSI and FAIR Joachim Stroth Univ.
The Compressed Baryonic Matter experiment at FAIR Claudia Höhne, GSI Darmstadt CBM collaboration Outline motivation, physics case observables experiment.
1 J.M. Heuser − CBM Silicon Tracking System Development of a Silicon Tracking System for the CBM Experiment at FAIR Johann M. Heuser, GSI Darmstadt for.
1 THE MUON DETECTION SYSTEM FOR THE CBM EXPERIMENT AT FAIR/GSI A. Kiseleva Helmholtz International Summer School Dense Matter In Heavy Ion Collisions and.
1 JINR Contribution to the CBM experiment Report at the 5 th Workshop on the Scientific Cooperation Between German Research Centers and JINR, Dubna, January.
A.N.Sissakian, A.S.Sorin Very High Multiplicity Physics Seventh International Workshop JINR, Dubna, September 18, 2007 Status of the project NICA/MPD at.
Di-muon measurements in CBM experiment at FAIR Arun Prakash 1 Partha Pratim Bhadhuri 2 Subhasis Chattopadhyay 2 Bhartendu Kumar Singh 1 (On behalf of CBM.
The Compressed Baryonic Matter Experiment at the Future Facility for Antiproton and Ion Research (FAIR) Outline:  FAIR: future center for nuclear and.
Peter Senger (GSI) The Compressed Baryonic Matter (CBM) experiment at FAIR FAIR Meeting Kiev, March Outline:  Scientific mission  Experimental.
Results from first beam tests for the development of a RICH detector for CBM J. Eschke 1*, C. Höhne 1 for the CBM collaboration 1 GSI, Darmstadt, Germany.
CBM The future of relativistiv heavy-ion physics at GSI V. Friese Gesellschaft für Schwerionenforschung Darmstadt, Germany Tracing the.
CBM Relativistiv heavy-ion physics at FAIR V. Friese Gesellschaft für Schwerionenforschung Darmstadt, Germany The QCD phase diagram : From.
The Compressed Baryonic Matter experiment at the future accelerator facility in Darmstadt Claudia Höhne GSI Darmstadt, Germany.
The Physics of high baryon densities Probing the QCD phase diagram The critical end point Properties of mesons in matter –Baryon density vs. temperature.
Physics with CBM Claudia Höhne, GSI Darmstadt CBM collaboration Outline motivation, physics case observables.
CBM at FAIR Outline:  CBM Physics  Feasibility studies  Detector R&D  Planning, costs, manpower,...
1 Physics of High Baryon Densities - The CBM experiment at FAIR Subhasis Chattopadhyay Variable Energy Cyclotron Centre, Kolkata for the CBM collaboration.
The Compressed Baryonic Matter Experiment at FAIR Physics Program, Challenges and Status.
The Compressed Baryonic Matter Experiment at FAIR Outline:  The Facility for Antiproton and Ion Research (FAIR)  Compressed Baryonic Matter: the physics.
Muon detection in the CBM experiment at FAIR Andrey Lebedev 1,2 Claudia Höhne 1 Ivan Kisel 1 Anna Kiseleva 3 Gennady Ososkov 2 1 GSI Helmholtzzentrum für.
Possible structures of a neutron star Exploring dense nuclear matter The Compressed Baryonic Matter Experiment atom: m nucleus:
The Compressed Baryonic Matter Experiment at the Future Accelerator Facility in Darmstadt Outline:  Probing dense baryonic matter  Experimental observables.
20/12/2011Christina Anna Dritsa1 Design of the Micro Vertex Detector of the CBM experiment: Development of a detector response model and feasibility studies.
The Compressed Baryonic Matter Experiment at the Future Facility for Antiproton and Ion Research (FAIR) Outline:  Physics: Exploring the QCD phasediagram.
The Compressed Baryonic Matter experiment at FAIR Claudia Höhne, GSI Darmstadt CBM collaboration Outline motivation, physics case observables experiment.
Study dileptons (e + e - ) and direct photons fn MPD/NICA NICA Roundetable Workshop IV: Physics at NICA9-12 October In-medium properties of hadrons:
Nu XuDirector’s Review, LBNL, May 17, 20061/23 Future Program for Studying Bulk Properties in High-Energy Nuclear Collisions Nu Xu.
CBM and FRRC Mikhail Ryzhinskiy, SPbSPU (on behalf of Russian CBM branch) 1 st FRRC International Seminar.
1 - Onset of deconfinement NA60+ - Existence (or non existence) of QCD critical point - Chiral symmetry restoration  Measuring dimuons at different energies.
Mass states of light vector mesons are considered to be sensitive probes of partial chiral symmetry restoration theoretically expected in high energy and/or.
PHOBOS at RHIC 2000 XIV Symposium of Nuclear Physics Taxco, Mexico January 2001 Edmundo Garcia, University of Maryland.
Dilepton measurements in heavy ion collisions: fixed-target versus collider experiments 1. Experimental setups 2. Multiplicities 3. Luminosities 4. Rates.
TOF ECAL TRD Iouri Vassiliev , I. Kisel and M. Zyzak
Multi-Strange Hyperons Triggering at SIS 100
Strangeness Prospects with the CBM Experiment
CBM Relativistiv heavy-ion physics at FAIR
A heavy-ion experiment at the future facility at GSI
I. Vassiliev, V. Akishina, I.Kisel and
Perspectives on strangeness physics with the CBM experiment at FAIR
Presentation transcript:

The Compressed Baryonic Matter Experiment at FAIR Outline:  Physics case  Feasibility studies and Detector R&D  Outlook Peter Senger Seoul, April 21, 2005

SIS 100 Tm SIS 300 Tm Structure of Nuclei far from Stability cooled antiproton beam: Hadron Spectroscopy Compressed Baryonic Matter The future Facility for Antiproton an Ion Research (FAIR) Ion and Laser Induced Plasmas: High Energy Density in Matter stopped antiprotons: antihydrogen Primary beams: /s 238 U AGeV 4·10 13 /s Protons 90 GeV /s U 35 AGeV (Ni 45 AGeV) Secondary beams: rare isotopes 1-2 AGeV antiprotons up to 30 GeV

States of strongly interacting matter baryons hadrons partons Compression + heating = quark-gluon matter (pion production) Neutron stars Early universe

Strongly interacting matter in neutron stars F. Weber J.Phys. G27 (2001) 465 “Strangeness" of dense matter ? In-medium properties of hadrons ? Compressibility of nuclear matter? Deconfinement at high baryon densities ?

The phase diagram of strongly interacting matter RHIC, LHC: high temperature, low baryon density FAIR: moderate temperature, high baryon density

Mapping the QCD phase diagram with heavy-ion collisions Critical endpoint: Z. Fodor, S. Katz, hep-lat/ S. Ejiri et al., hep-lat/ μ B <  400 MeV: crossover SIS100/300 ε =0.5 GeV/fm 3 baryon density:  B  4 ( mT/2  ) 3/2 x [exp((  B -m)/T) - exp((-  B -m)/T)] baryons - antibaryons

C. R. Allton et al, hep-lat Lattice QCD : maximal baryon number density fluctuations at T C for  q = T C (  B  500 MeV) Indication for critical endpoint at finite baryon chemical potential from lattice QCD

“Trajectories” (3 fluid hydro) Hadron gas EOS V.Toneev, Y. Ivanov et al. nucl-th/ Top SPS energies: baryonic matter not equilibrated

Pion multiplicities per participating nucleons RHIC

SIS: KaoS AGS: E802,E866 SPS: NA49 Production of K + und K - mesons in central AuAu/PbPb collisions RHIC

Statistical hadron gas model P. Braun-Munzinger et al. Nucl. Phys. A 697 (2002) 902 Discontinuities in ratios and slopes central Au+Au and Pb+Pb collisions: AGS, CERN-NA49, RHIC onset of phase transition at 30 AGeV ???

C. Blume et al., nucl-ex/ Strangeness/pion ratios versus beam energy Decrease of baryon-chemical potential: transition from baryon-dominated to meson-dominated matter

p n  ++  K   p e+e+ e-e-  Looking into the fireball … … using penetrating probes: short-lived vector mesons decaying into electron-positron pairs

Measure spectral functions of vector mesons via their decay into electron-positron pairs using Ring Imaging Cherenkov detectors CERN-SPS CH 4 radiator gas:  thr = 32 GSI C 4 F 10 radiator gas:  thr = 18.3 UV-det.: fast CsI cathode

Invariant mass of electron-positron pairs from Pb+Au at 40 AGeV ≈185 pairs! CERES Collaboration: D.Adamova et al., Phys. Rev. Lett. 91 (2003)

First order phase transition and the critical endpoint gas liquid coexistence Below T c : 1. order phase transition above T c : no phase boundary At the critical point: Large density fluctuations, critical opalescence Event-by-event analysis by NA49: 5% most central Pb+Pb collisions at 158 AGeV

Fluctuations from NA49 dynamical fluctuations reported by NA49 increase towards low energies K/  : not reproduced by UrQMD p/  : correlation due to resonance decays NA49, nucl-ex/ nucl-ex/

Diagnostic probes of compressed baryonic matter U+U 23 AGeV

CBM physics topics and observables  In-medium modifications of hadrons  onset of chiral symmetry restoration at high  B measure: , ,   e + e - open charm (D mesons)  Strangeness in matter  production and propagation of strange particles measure: K, , , ,   Indications for deconfinement at high  B  production and propagation of charm measure: J/ , D  Critical point  event-by-event fluctuations

central collisions 25 AGeV Au+Au 158 AGeV Pb+Pb J/  multiplicity 1.5· ·10 -3 beam intensity 1·10 9 /s 2·10 7 /s interactions 1·10 7 /s (1%) 2·10 6 /s (10%) central collisions 1·10 6 /s 2·10 5 /s J/  rate 15/s 200/s 6% J/  e + e - (  +  - ) 0.9/s 12/s spill fraction acceptance 0.25  0.1 J/  measured 0.17/s  0.3/s  1·10 5 /week  1.8·10 5 /week J/ψ measurement requires high beam intensities and lepton identification

SIS18 SIS100/ 300 Meson production in central Au+Au collisions W. Cassing, E. Bratkovskaya, A. Sibirtsev, Nucl. Phys. A 691 (2001) 745

D-meson measurement requires vertex resolution Some hadronic decay modes D  (c  = 317  m): D +  K 0  + (2.9  0.26%) D +  K -  +  + (9  0.6%) D 0 (c  =  m): D 0  K -  + (3.9  0.09%) D 0  K -  +  +  - (7.6  0.4%) D meson production in pN collisions Measure displaced vertex with resolution of  50 μm !

ρ, ω, φ  e+e- requires electron identification D.Adamova et al., PRL 91 (2003) Dominant background: π 0 -Dalitz decay and gamma conversion. CERES 2000: 159 AGeV Pb+Au beam intensity: 10 6 ions / spill 1 spill = 4 s beam and 15 s pause targets: 13 x 25 μm Au ( ~ 1 % interaction) trigger: 8% most central Event rate = 470 / spill (~ 25 Hz = 15 Mio events/week) Important: identification of soft electrons/positrons !

Alternative option: ρ, ω, φ, J/ψ  μ+μ- NA60 preliminary: In+In 158 AGeV H. Ohnishi, SQM2004, Capetown

Photon yield measured by WA98 Phys. Rev. Lett. 93 (022301), 2004 Photon (π 0, η) measurements: electromagnetic calorimeter Pb+Pb 158 AGeV 10% central collisions

The CBM Experiment  Radiation hard Silicon (pixel/strip) Tracking System in a magnetic dipole field  Electron detectors: RICH & TRD & ECAL: pion suppression better 10 4  Hadron identification: TOF-RPC  Measurement of photons, π 0, η, and muons: electromagn. calorimeter (ECAL)  High speed data acquisition and trigger system

Experimental challenges  10 7 Au+Au reactions/sec (beam intensities up to 10 9 ions/sec, 1 % interaction target)  determination of (displaced) vertices with high resolution (  50  m)  identification of electrons and hadrons Central Au+Au collision at 25 AGeV: URQMD + GEANT4 160 p, 400  -, 400  +, 44 K +, 13 K -,.... Simultaneous measurement of all observables is not possible: optimized beam intensities and dedicated subdetectors

Tracking with the Silicon Tracking System High track density:  600 charged particles in  25 o track finding efficiency momentum resolution Assumptions: ideal detector response, hit resolution 10 μm, no pile-up events Requirements: track hits more than 3 stations

Silicon Pixel Vertex Detector Design goals: low materal budget: d < 200 μm single hit resolution < 20 μm radiation hard (dose n eq /cm 2 ) read-out time 25 ns Silicon Tracking System: 2 (3) Pixel Stations/ 5 (4) Strip Stations Vertex tracking: two pixel layers (5 cm and 10 cm downstream target) Roadmap: R&D on Monolithic Active Pixel Sensors (MAPS) thickness below 100 μm pitch 20 μm, single hit resolution :  3 μm radiation tolerant (10 13 n eq /cm 2 ) ultimate read-out time few μs MIMOSA IV IReS / LEPSI Strasbourg Alternative: next generation of thin, radiation hard, fast hybrid detectors

Benchmark for vertexing: D 0  K -  + reconstruction D0  K -,  + signal Background Reconstructed events Z-vertex(cm) Simulations: UrQMD (incl. hyperons) + D meson

D-meson: online event selection Cuts include: impact parameter 80 μm < b < 500 μm z-vertex 250 μm < b < 5000 μm event reduction by factor 1000: 10 MHz  10 kHz using track information from MAPS Silicon Tracker only (no particle ID) Track reconstruction (Kalman filter) without magnetic field, dp/p = 1% ( Similar results with magnetic field) Vertex trigger with MAPS: ≈ 1 MHz reaction rate  ≈ 300 D mesons per hour

Hyperon detection with STS without p, K, π identification UrQMD central events 25 AGeV Magnetic field Silicon detector hits with 10 μm resolution Ideal track finding (at least 4 MC points) Momentum and vertex reconstruction with Kalman filter

  -  - Invariant mass distributions after topological cuts efficiency 15.8% 6.7% 7.7%

Squared mass measured with TOF Simulations: UrQMD central Au + Au at 25 AGeV GEANT4 with B-field, geometry and material time resolution 80 ps, 10 m distance Particle identification by TOF K π p Kaon efficiency

Acceptance for particles identified by TOF 99 % purity: Dynamical fluctuations in particle ratios ?

TOF Acceptance TOF distance 10 m time resolution 80 ps Signals with amplitudes above 2% are well reproduced Sensitivity on dynamical fluctuations Generic model based on UrQMD particle yields: central Au+Au collisions at 25 AGeV: 694 , 54 K, 161 p

Feasibility studies: charmonium measurements Assumptions: no track reconstruction, momentum resolution 1% Pion suppression 10 4 Background: central Au + Au UrQMD + GEANT4 Cut p T > 1 GeV/c J/ψ 15 AGeV Au+Au 25 AGeV Au+Au 35 AGeV Au+Au J/ψ Single electron (positron) spectra

Cuts: 1. reconstruct and remove pairs below M e+e - 2. single electron: - transverse momentum p t - impact parameter d 3. electron pair: - opening angle α Low mass electron-positron pairs Generic study assuming ideal tracking Background: URQMD Au+Au 25 AGeV + GEANT4 Magnetic fields: 0T, 0.5 T (constant), 1 T (constant) parameter 0T0.5T1T M e+e - MeV] p t [MeV/c] d [  m] α deg] Dominating background:   e + e -  0   e + e -

Results 35·10 6 events 70·10 6 events 56·10 6 events S/B in the peak:  0 T T T assumption: soft electrons identified

Design of a fast RICH Design goals: electron ID for γ > 42 e/π discrimination > 100 hadron blind up to about 6 GeV/c low mass mirrors (Be-glass) fast UV detector URQMD + GEANT4: Au+Au 25 AGeV radiator (40% He + 60% CH 4 ),  50 rings per event, photons per ring participating: In-Kwon Yoo, Pusan Nat. Univ.

Hit rates for 10 7 minimum bias Au+Au collisions at 25 AGeV: Experimental conditions Rates of > 5 kHz/cm 2  detector R&D Θ mrad TRD 1 distance 4 m TRD 2 distance 6 m TRD 3 distance 8 m TOF-RPC distance 10 m rates kHz/ cm 2 area m 2 N cm -2 x rates kHz/ cm 2 area m 2 N cm -2 x rates kHz/ cm 2 area m 2 N cm -2 x rates kHz/ cm 2 area m 2 N cm -2 x – – – – – – – – – sum

Design of a fast TRD Simulation of pion suppression: MWPC-based TRD 90%. Design goals: e/ π discrimination of > 100 (p > 1 GeV/c) High rate capability up to 100 kHz/cm 2 Position resolution of about 200 μ m Large area (  m 2, 9 – 12 layers)

MWPC (Dubna)GEM (Dubna) Rate performance of TRD prototypes (ALICE type): beam test measurements (p and π) MWPC GSI MWPC GSI, Bucharest MWPC Dubna

single cell RPC Multigap RPC (ALICE ) shielded RPC prototype Design goals: Time resolution ≤ 80 ps Rate capability up to 20 kHz/cm 2 Efficiency > 95 % Large area  100 m 2 Long term stability Layout options Development of a large-area high-rate timing RPC Participating: Byungsik Hong, Korea Univ.

RPC prototype with phosphate glass Window glass: improved rate capability with increased temperature RPC prototype tests: time resolution vs. rate Detector with plastic electrodes (resistivity 10 9 Ohm cm.) New: encouraging results with ceramic electrodes !

electron/pion supression using ECAL and preshower detector Design of an electromagnetic calorimeter ECAL (Shashlik): E(ECAL)/p(tracker) electrons pions preshower detector electron pion

L1 Select Special hardware High bandwidth Self-triggered FEE – Data Push DAQ Detector Cave Shack FEE DAQ Archive f clock L2 Select Self-triggered front-end Autonomous hit detection No dedicated trigger connectivity All detectors can contribute to L1 Large buffer depth available System is throughput-limited and not latency-limited Modular design: Few multi-purpose rather many special-purpose modules archive rate few GByte/s

CBM HADES

Observables: Penetrating probes: , , , J /  (vector mesons) Strangeness: K, , , , , Open charm: D o, D  Hadrons ( p, π), exotica Experimental program of CBM: Systematic investigations: A+A collisions from 8 to 45 (35) AGeV, Z/A=0.5 (0.4) p+A collisions from 8 to 90 GeV p+p collisions from 8 to 90 GeV Beam energies up to 8 AGeV: HADES Large integrated luminosity: High beam intensity and duty cycle, Available for several month per year Detector requirements Large geometrical acceptance good hadron and electron identification excellent vertex resolution high rate capability of detectors, FEE and DAQ

CBM Collaboration : 41 institutions, > 300 Members Croatia: RBI, Zagreb China: Wuhan Univ. Cyprus: Nikosia Univ. Czech Republic: CAS, Rez Techn. Univ. Prague France: IReS Strasbourg Hungaria: KFKI Budapest Eötvös Univ. Budapest Korea: Korea Univ. Seoul Pusan National Univ. Norway: Univ. Bergen Russia: CKBM, St. Petersburg IHEP Protvino INR Troitzk ITEP Moscow KRI, St. Petersburg Kurchatov Inst., Moscow LHE, JINR Dubna LPP, JINR Dubna LIT, JINR Dubna MEPHI Moscow Obninsk State Univ. PNPI Gatchina SINP, Moscow State Univ. St. Petersburg Polytec. U. Spain: Santiago de Compostela Univ. Ukraine: Shevshenko Univ., Kiev Germany: Univ. Heidelberg, Phys. Inst. Univ. HD, Kirchhoff Inst. Univ. Frankfurt Univ. Kaiserslautern Univ. Mannheim Univ. Marburg Univ. Münster FZ Rossendorf GSI Darmstadt Poland: Krakow Univ. Warsaw Univ. Silesia Univ. Katowice Portugal: LIP Coimbra Romania: NIPNE Bucharest

The FAIR member states (March 2005) FAIR Project Greece FAIR Council (Representatives of Institutions) FrancePoland Russia FinlandSpain UK SwedenGermany Project Management Italy Obs. EU Obs. China India Observ. USA Obs. Hungary Romania ?

Funding profile