Update of 3.2 km ILC DR design (DMC3) Dou Wang, Jie Gao, Gang Xu, Yiwei Wang (IHEP) IWLC2010 Monday 18 October - Friday 22 October 2010 Geneva, Switzerland.

Slides:



Advertisements
Similar presentations
1 ILC Bunch compressor Damping ring ILC Summer School August Eun-San Kim KNU.
Advertisements

DR km DTC Lattice 7 July 2011 D. Rubin. DTC01 layout 1.Circumference = m, 712m straights 2.~ 6 phase trombone cells 3.54 – 1.92m long wigglers.
The Overview of the ILC RTML Bunch Compressor Design Sergei Seletskiy LCWS 13 November, 2012.
Comparison between NLC, ILC and CLIC Damping Ring parameters May 8 th, 2007 CLIC Parameter working group Y. Papaphilippou.
DR 3.2 km Lattice Requirements Webex meeting 10 January 2011.
Damping Ring Parameters and Interface to Sources S. Guiducci BTR, LNF 7 July 2011.
ILC Damping Ring Alternative Lattice Design ( Modified FODO ) ** Yi-Peng Sun *,1,2, Jie Gao 1, Zhi-Yu Guo 2 Wei-Shi Wan 3 1 Institute of High Energy Physics,
Lattice design for CEPC main ring H. Geng, G. Xu, W. Chou, Y. Guo, N. Wang, Y. Peng, X. Cui, Y. Zhang, T. Yue, Z. Duan, Y. Wang, D. Wang, S. Bai, Q. Qin,
Global Design Effort ILC Damping Rings: R&D Plan and Organisation in the Technical Design Phase Andy Wolski University of Liverpool and the Cockcroft Institute,
Lattice design for FCC-ee Bastian Haerer (CERN BE-ABP-LAT, Karlsruhe Institute of Technology (KIT)) 1 8 th Gentner Day, 28 October 2015.
Damping Ring Specifications S. Guiducci ALCPG11, 20 March 2011.
1 BROOKHAVEN SCIENCE ASSOCIATES 1 NSLS-II Lattice Design 1.TBA-24 Lattice Design - Advantages and shortcomings Low emittance -> high chromaticity -> small.
Parameter scan for the CLIC damping rings July 23rd, 2008 Y. Papaphilippou Thanks to H. Braun, M. Korostelev and D. Schulte.
Accumulator & Compressor Rings with Flexible Momentum Compaction arccells MAP 2014 Spring Meeting, Fermilab, May 27-31, 2014 Y. Alexahin (FNAL APC)
HF2014 Workshop, Beijing, China 9-12 October 2014 Challenges and Status of the FCC-ee lattice design Bastian Haerer Challenges.
Off-axis injection lattice design studies of HEPS storage ring
ILC DR Lower Horizontal Emittance, preliminary study
Design study of CEPC Alternating Magnetic Field Booster
100km CEPC parameter and lattice design
The Studies of Dynamic Aperture on CEPC
CEPC parameter optimization and lattice design
ILC DR Lower Horizontal Emittance? -2
Large Booster and Collider Ring
First Look at Nonlinear Dynamics in the Electron Collider Ring
Optimization of CEPC Dynamic Aperture
Status of CEPC lattice design
CEPC Booster Design Dou Wang, Chenghui Yu, Tianjian Bian, Xiaohao Cui, Chuang Zhang, Yudong Liu, Na Wang, Daheng Ji, Jiyuan Zhai, Wen Kang, Cai Meng, Jie.
The new 7BA design of BAPS
DA study for CEPC Main Ring
DA Study for the CEPC Partial Double Ring Scheme
CEPC partial double ring scheme and crab-waist parameters
ANKA Seminar Ultra-low emittance for the CLIC damping rings using super-conducting wigglers Yannis PAPAPHILIPPOU October 8th, 2007.
CEPC Injector Damping Ring
CEPC parameter optimization and lattice design
Comparison of the final focus design
LHC (SSC) Byung Yunn CASA.
ILC 3.2 km DR design based on FODO lattice (DMC3)
Collider Ring Optics & Related Issues
M. Biagini, S. Guiducci ECLOUD WG webex meeting December 15, 2009
CEPC APDR and PDR scheme
CEPC-SPPC Beihang Symposium
ILC 3.2 km DR design based on FODO lattice (DMC3)
CEPC advanced partial double ring scheme
CEPC parameter optimization and lattice design
Design study of CEPC Alternating Magnetic Field Booster
CEPC DA optimization with downhill Simplex
Negative Momentum Compaction lattice options for PS2
Design study of CEPC Alternating Magnetic Field Booster
Update of DA Study for the CEPC Partial Double Ring Scheme
PEPX-type BAPS Lattice Design and Beam Dynamics Optimization
Update of Lattice Design for CEPC Main Ring
CEPC Partial Double Ring Parameter Update
CEPC optics and booster optics
Update of Lattice Design for CEPC Main Ring
Lattice design for double ring scheme of CEPC main ring
Update of lattice design for CEPC main ring
Update on CEPC pretzel scheme design
Lattice design and dynamic aperture optimization for CEPC main ring
Lattice design for CEPC
CEPC APDR and PDR scheme
Kicker and RF systems for Damping Rings
ANKA Seminar Ultra-low emittance for the CLIC damping rings using super-conducting wigglers Yannis PAPAPHILIPPOU October 8th, 2007.
Kicker specifications for Damping Rings
Optics considerations for PS2
Negative Momentum Compaction lattice options for PS2
Ion Collider Ring Using Superferric Magnets
Fanglei Lin, Yuhong Zhang JLEIC R&D Meeting, March 10, 2016
Possibility of MEIC Arc Cell Using PEP-II Dipole
Fanglei Lin JLEIC R&D Meeting, August 4, 2016
3.2 km FODO lattice for 10 Hz operation (DMC4)
Presentation transcript:

Update of 3.2 km ILC DR design (DMC3) Dou Wang, Jie Gao, Gang Xu, Yiwei Wang (IHEP) IWLC2010 Monday 18 October - Friday 22 October 2010 Geneva, Switzerland

Overall considerations Keep the racetrack structure Use FODO cell for arc sections Keep the damping time a little smaller than 25 ms - decided by the repetition frequency (storage time=200ms) Keep the nomalised natural emittance ~ 4 um The momentum compaction factor is tunable (10 -4 ) The injection and extraction beam lines for both e+ and e- rings can be in the same tunel Locating the rf and wigglers near each other to minimise cryogenic transfer lines. But rf must be upstream to avoid the synchrotron radiation Dynamic aperture should not be smaller than 3 times of e+ injection beam size

Layout

Main updates Replace the 110 degree (DMC1) are cell by 60 degree. Increase arc sextupoles from 216 to 332 in order to enlarge the dynamic aperture - a focusing sextupole and a defocusing sextupole for every arc cell Phase advance per arc cell 60°75°90° Mumentum compaction 6.19× × ×10 -4

90°arc cell

Wiggler cell

Chicane cell

RF section

Inj/Extr section Straight section center

Whole ring

Major parameters of DMC3 Beam energy5.0 GeV Circumference m RF frequency650 MHz Harmonic number 7065 Transverse damping time23 ms Natural bunch length6 mm Natural energy spread 1.2 6×10 -3 Phase advance per FODO cell 6 0° 75 ° 9 0° Momentum compaction factor6.19× × ×10 -4 Nomalised natural emittance6.27 um4.45 um3.58 um RF voltage33.0 MV21.84 MV15.36 MV RF acceptance2.75%2.58%2.38% Synchrotron tune Working point x/y / / / Natural chromaticity x/y -42.3/ / /-61.7 Maximum quadrupole gradient8.5 T/m9.0 T/m11.3 T/m Maximum sextupole gradient50 T/m 2 88 T/m T/m 2

Major parameters of DCO4 Circumference m Beam energy5 GeV RF frequency650 MHz Transverse damping time21.1 ms Natural rms bunch length6.0 mm Natural rms energy spread1.27×10 -3 wiggler216 m total length; 400 mm period; 1.6 T peak field Arc cell phase advance72°90°100° Momentum compaction factor2.9× × ×10 -4 RF voltage32.6 MV20.4 MV17.1 MV Normalized natural emittance6.4 mm4.4 mm3.9 mm Tunes (x/y)61.12/ / /75.41 Natural chromaticity (x/y)-71.0/ / / For the same phase advance of arc cell, our design reduced the RF voltage by about 30%.

Magnet parameters DMC3DSB3DCO4 Arc dipole length2.0 m2.7 m2.0 m Arc dipole field0.154 T0.26/0.36T0.27 T Number of arc dipoles Chicane dipole length1.50 m1.0 m Chicane dipole field0.1 T0.27 T Number of chicane dipoles3248 Quadrupole length0.40 m0.6/0.3 m0.3 m Total number of quadrupoles Maximum quadrupole gradient 11.3T/m7.5 T/m12.0 T/m Sextupole length 0.25 m Total number of sextupoles Maximum sextupole gradient 151 T/m T/m T/m 2

Wigglers DMC1SB2009DCO4 Wiggler peak field1.6 T Wiggler period length0.4 m Number of wigglers Wiggler unit length2.45 m Wiggler total length98 m78.4 m215.6 m

60°75°90° DMC3 dynamic aperture DCO4 dynamic aperture

summary Our design satisfies all the principal requirements for the 3.2 km ring. The momentum compaction factor is tunable in a large range ( 2.7×10 -4 ~ 6.2×10 -4 ). - Allows 6 mm rms bunch length with the total rf voltage from 15 MV to 33 MV, 30% smaller than DCO4. The total number of magnets for DMC3 is about 10% less than DCO4. Dynamic aperture looks good. - good for higher momentum compaction factor - becomes smaller at lower momentum compaction factor because of small dispersion