Wednesday, Nov. 6, 2013PHYS 3313-001, Fall 2013 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #16 Wednesday, Nov. 6, 2013 Dr. Jaehoon Yu Barriers and.

Slides:



Advertisements
Similar presentations
Monday, Oct. 15, 2012PHYS , Fall 2012 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #12 Monday, Oct. 15, 2012 Dr. Jaehoon Yu The Schrödinger.
Advertisements

Monday, Nov. 11, 2013PHYS , Fall 2013 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #17 Monday, Nov. 11, 2013 Dr. Jaehoon Yu Alpha Particle.
1 Chapter 40 Quantum Mechanics April 6,8 Wave functions and Schrödinger equation 40.1 Wave functions and the one-dimensional Schrödinger equation Quantum.
CHAPTER 2 Introduction to Quantum Mechanics
Exam 2 Mean was 67 with an added curve of 5 points (total=72) to match the mean of exam 1. Max after the curve = 99 Std Dev = 15 Grades and solutions are.
CHAPTER 6 Quantum Mechanics II
PHYS 3313 – Section 001 Lecture #17
PHYS 3313 – Section 001 Lecture #21
6.1The Schrödinger Wave Equation 6.2Expectation Values 6.3Infinite Square-Well Potential 6.4Finite Square-Well Potential 6.5Three-Dimensional Infinite-Potential.
Monday, Nov. 5, 2012PHYS , Fall 2012 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #17 Monday, Nov. 1, 2012 Dr. Jaehoon Yu Alpha Particle Decay.
Monday, Oct. 22, 2012PHYS , Fall 2012 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #14 Monday, Oct. 22, 2012 Dr. Jaehoon Yu Infinite Potential.
Lecture 16 Tunneling (c) So Hirata, Department of Chemistry, University of Illinois at Urbana-Champaign. This material has been developed and made available.
Wednesday, April 22, 2015 PHYS , Spring 2015 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture # 22 Wednesday, April 22, 2015 Dr. Barry Spurlock.
Wednesday, April 8, 2015PHYS , Spring 2015 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #18 Wednesday, April 8, 2015 Dr. Jaehoon Yu Expectation.
1 PHYS 3313 – Section 001 Lecture #16 Monday, Mar. 24, 2014 Dr. Jaehoon Yu De Broglie Waves Bohr’s Quantization Conditions Electron Scattering Wave Packets.
1 PHYS 3313 – Section 001 Lecture #10 Monday, Feb. 17, 2014 Dr. Jaehoon Yu Photoelectric Effect Compton Effect Pair production/Pair annihilation Monday,
1 PHYS 3313 – Section 001 Lecture #22 Monday, Apr. 14, 2014 Dr. Jaehoon Yu Barriers and Tunneling Alpha Particle Decay Use of Schrodinger Equation on Hydrogen.
Wednesday, Oct. 30, 2013PHYS , Fall 2013 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #14 Wednesday, Oct. 30, 2013 Dr. Jaehoon Yu Infinite.
Physics Lecture 15 10/29/ Andrew Brandt Wednesday October 29, 2014 Dr. Andrew Brandt 0. Hw’s due on next 3 Mondays, test on Nov Wells+Barriers.
Potential Step Quantum Physics 2002 Recommended Reading: Harris Chapter 5, Section 1.
Wednesday, Oct. 17, 2012PHYS , Fall 2012 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #13 Wednesday, Oct. 17, 2012 Dr. Jaehoon Yu Properties.
Chapter 41 1D Wavefunctions. Topics: Schrödinger’s Equation: The Law of Psi Solving the Schrödinger Equation A Particle in a Rigid Box: Energies and Wave.
Wednesday, Nov. 13, 2013 PHYS , Fall 2013 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #18 Wednesday, Nov. 13, 2013 Dr. Jaehoon Yu Solutions.
Quantum Tunnelling Quantum Physics 2002 Recommended Reading: R.Harris, Chapter 5 Sections 1, 2 and 3.
Monday, Oct. 7, 2013PHYS , Fall 2013 Dr. Amir Farbin 1 PHYS 3313 – Section 001 Lecture #12 Monday, Oct. 7, 2013 Dr. Amir Farbin Wave Motion & Properties.
1 PHYS 3313 – Section 001 Lecture #23 Tuesday, Apr. 16, 2014 Dr. Jaehoon Yu Schrodinger Equation for Hydrogen Atom Quantum Numbers Solutions to the Angular.
1 PHYS 3313 – Section 001 Lecture #18 Monday, Mar. 31, 2014 Dr. Jaehoon Yu Valid Wave Functions Energy and Position Operators Infinite Square Well Potential.
1 PHYS 3313 – Section 001 Lecture #15 Monday, Mar. 17, 2014 Dr. Jaehoon Yu Atomic Excitation by Electrons X-ray Scattering Bragg’s Law De Broglie Waves.
Monday, April 6, 2015PHYS , Spring 2015 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #17 Monday, April 6, 2015 Dr. Jaehoon Yu Normalization.
Research quantum mechanical methods of bioobjects.
Monday, March 30, 2015PHYS , Spring 2015 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #15 Monday, March 30, 2015 Dr. Jaehoon Yu Wave Motion.
PHYS 3313 – Section 001 Lecture #18
Monday, March 16, 2015PHYS , Spring 2014 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #12 Monday, March 16, 2015 Dr. Jaehoon Yu Rutherford.
Wednesday, Oct. 31, 2012PHYS , Fall 2012 Dr. Amir Farbin 1 PHYS 3313 – Section 001 Lecture #16 Wednesday, Oct. 31, 2012 Dr. Amir Farbin Reflection.
Monday, Nov. 4, 2013PHYS , Fall 2013 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #15 Monday, Nov. 4, 2013 Dr. Jaehoon Yu Finite Potential.
Wednesday, Nov. 7, 2012PHYS , Fall 2012 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #17 Wednesday, Nov. 7, 2012 Dr. Jaehoon Yu Solutions for.
Monday, April 13, 2015PHYS , Spring 2015 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture # 19 Monday, April 13, 2015 Dr. Jaehoon Yu Refresher:
Wednesday, April 1, 2015PHYS , Spring 2015 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #16 Wednesday, April 1, 2015 Dr. Jaehoon Yu Probability.
Wednesday, April 15, 2015 PHYS , Spring 2015 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture # 20 Wednesday, April 15, 2015 Dr. Jaehoon Yu Finite.
1924: de Broglie suggests particles are waves Mid-1925: Werner Heisenberg introduces Matrix Mechanics In 1927 he derives uncertainty principles Late 1925:
1 PHYS 3313 – Section 001 Lecture #20 Monday, Apr. 7, 2014 Dr. Jaehoon Yu 3D Infinite Potential Well Degeneracy Simple Harmonic Oscillator Barriers and.
PHYS 3313 – Section 001 Lecture #19
PHYS 3313 – Section 001 Lecture #17
PHYS 3313 – Section 001 Lecture #16
Solutions of Schrodinger Equation
CHAPTER 5 The Schrodinger Eqn.
Chapter 40 Quantum Mechanics
Lecture 16 Tunneling.
PHYS 3313 – Section 001 Lecture #16
PHYS 3313 – Section 001 Lecture #21
PHYS 3313 – Section 001 Lecture #17
CHAPTER 6 Quantum Mechanics II
CHAPTER 5 The Schrodinger Eqn.
PHYS 3313 – Section 001 Lecture #23
PHYS 3313 – Section 001 Lecture #21
PHYS 3313 – Section 001 Lecture #21
Chapter 40 Quantum Mechanics
PHYS 3313 – Section 001 Lecture #20
PHYS 3313 – Section 001 Lecture #20
PHYS 3313 – Section 001 Lecture #17
Physics Lecture 13 Wednesday March 3, 2010 Dr. Andrew Brandt
PHYS 3313 – Section 001 Lecture #23
CHAPTER 3 PROBLEMS IN ONE DIMENSION Particle in one dimensional box
PHYS 3313 – Section 001 Lecture #19
Chapter 40 Quantum Mechanics
PHYS 3313 – Section 001 Lecture #21
PHYS 3313 – Section 001 Lecture #21
PHYS 3313 – Section 001 Lecture #18
PHYS 3313 – Section 001 Lecture #20
Department of Electronics
Presentation transcript:

Wednesday, Nov. 6, 2013PHYS , Fall 2013 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #16 Wednesday, Nov. 6, 2013 Dr. Jaehoon Yu Barriers and Tunneling Alpha Particle Decay Use of Schrodinger Equation on Hydrogen Atom Solutions for Schrodinger Equation for Hydrogen Atom Quantum Numbers

Wednesday, Nov. 6, 2013PHYS , Fall 2013 Dr. Jaehoon Yu 2 Announcements Research paper template is posted onto the research link –Deadline for research paper submission is Monday, Dec. 2!! Colloquium today –4pm Wednesday, Nov. 6, SH101, Dr. David Nygren of Lorentz Berkeley National Laboratory, Triple extra credit Bring homework #5 after the class

Wednesday, Nov. 6, 2013PHYS , Fall 2013 Dr. Jaehoon Yu 3

Reminder: Special project #5 Show that the Schrodinger equation becomes Newton’s second law. (15 points) Deadline Monday, Nov. 11, 2013 You MUST have your own answers! Wednesday, Nov. 6, PHYS , Fall 2013 Dr. Jaehoon Yu

Monday, Nov. 5, 2012PHYS , Fall 2012 Dr. Jaehoon Yu 5 Research Presentations Each of the 12 research groups makes a 10min presentation –8min presentation + 2min Q&A –All presentations must be in power point –I must receive all final presentation files by 8pm, Sunday, Dec. 1 No changes are allowed afterward –The representative of the group makes the presentation with all group members participate in the Q&A session Date and time: Determined by drawing –In class Monday, Dec. 2 or in class Wednesday, Dec. 4 Important metrics –Contents of the presentation: 60% Inclusion of all important points as mentioned in the report The quality of the research and making the right points –Quality of the presentation itself: 15% –Presentation manner: 10% –Q&A handling: 10% –Staying in the allotted presentation time: 5% –Judging participation and sincerity: 5%

Barriers and Tunneling Consider a particle of energy E approaching a potential barrier of height V 0 and the potential everywhere else is zero. We will first consider the case when the energy is greater than the potential barrier. In regions I and III the wave numbers are: In the barrier region we have Wednesday, Nov. 6, PHYS , Fall 2013 Dr. Jaehoon Yu

Reflection and Transmission The wave function will consist of an incident wave, a reflected wave, and a transmitted wave. The potentials and the Schrödinger wave equation for the three regions are as follows: The corresponding solutions are: As the wave moves from left to right, we can simplify the wave functions to: Wednesday, Nov. 6, PHYS , Fall 2013 Dr. Jaehoon Yu

Probability of Reflection and Transmission The probability of the particles being reflected R or transmitted T is: The maximum kinetic energy of the photoelectrons depends on the value of the light frequency f and not on the intensity. Because the particles must be either reflected or transmitted we have: R + T = 1 By applying the boundary conditions x → ±∞, x = 0, and x = L, we arrive at the transmission probability: When does the transmission probability become 1? Wednesday, Nov. 6, PHYS , Fall 2013 Dr. Jaehoon Yu

Tunneling Now we consider the situation where classically the particle does not have enough energy to surmount the potential barrier, E < V0.V0. The quantum mechanical result, however, is one of the most remarkable features of modern physics, and there is ample experimental proof of its existence. There is a small, but finite, probability that the particle can penetrate the barrier and even emerge on the other side. The wave function in region II becomes The transmission probability that describes the phenomenon of tunneling is Wednesday, Nov. 6, PHYS , Fall 2013 Dr. Jaehoon Yu

Uncertainty Explanation Consider when κL κL >> 1 then the transmission probability becomes: This violation allowed by the uncertainty principle is equal to the negative kinetic energy required! The particle is allowed by quantum mechanics and the uncertainty principle to penetrate into a classically forbidden region. The minimum such kinetic energy is: Wednesday, Nov. 6, PHYS , Fall 2013 Dr. Jaehoon Yu

Analogy with Wave Optics If light passing through a glass prism reflects from an internal surface with an angle greater than the critical angle, total internal reflection occurs. The electromagnetic field, however, is not exactly zero just outside the prism. Thus, if we bring another prism very close to the first one, experiments show that the electromagnetic wave (light) appears in the second prism. The situation is analogous to the tunneling described here. This effect was observed by Newton and can be demonstrated with two prisms and a laser. The intensity of the second light beam decreases exponentially as the distance between the two prisms increases. Wednesday, Nov. 6, PHYS , Fall 2013 Dr. Jaehoon Yu