Lattice Fermion with Chiral Chemical Potential NTFL workshop, Feb. 17, 2012 Arata Yamamoto (University of Tokyo) AY, Phys. Rev. Lett. 107, 031601 (2011)

Slides:



Advertisements
Similar presentations
Lecture 1: basics of lattice QCD Peter Petreczky Lattice regularization and gauge symmetry : Wilson gauge action, fermion doubling Different fermion formulations.
Advertisements

A method of finding the critical point in finite density QCD
P. Vranas, IBM Watson Research Lab 1 Gap domain wall fermions P. Vranas IBM Watson Research Lab.
Non-perturbative improvement of nHYP smeared fermions R. Hoffmann In collaboration with A. Hasenfratz and S. Schaefer University of Colorado Peak Peak.
1 Meson correlators of two-flavor QCD in the epsilon-regime Hidenori Fukaya (RIKEN) with S.Aoki, S.Hashimoto, T.Kaneko, H.Matsufuru, J.Noaki, K.Ogawa,
The QCD equation of state for two flavor QCD at non-zero chemical potential Shinji Ejiri (University of Tokyo) Collaborators: C. Allton, S. Hands (Swansea),
Scaling properties of the chiral phase transition in the low density region of two-flavor QCD with improved Wilson fermions WHOT-QCD Collaboration: S.
Axial symmetry at finite temperature Guido Cossu High Energy Accelerator Research Organization – KEK Lattice Field Theory on multi-PFLOPS computers German-Japanese.
Su Houng Lee Theme: 1.Will U A (1) symmetry breaking effects remain at high T/  2.Relation between Quark condensate and the ’ mass Ref: SHL, T. Hatsuda,
Chiral Anomaly and Local Polarization Effect from Quantum Transport Approach 高建华 山东大学(威海) J.H. Gao, Z.T. Liang, S. Pu, Q. Wang, X.N. Wang, PRL 109, (2012)
Quantum Kinetic Theory Jian-Hua Gao Shandong University at Weihai In collaboration with Zuo-Tang Liang, Shi Pu, Qun Wang and Xin-Nian Wang PRL 109, (2012),
Strong Magnetic Fields in QCD Lattice Calculations P.V.Buividovich ( ITEP, JINR ) ‏, M.N.Chernodub (LMPT, Tours University, ITEP) ‏, E.V.Luschevskaya (ITEP,
Naoki Yamamoto (Univ. of Tokyo) Tetsuo Hatsuda (Univ. of Tokyo) Motoi Tachibana (Saga Univ.) Gordon Baym (Univ. of Illinois) Phys. Rev. Lett. 97 (2006)
Towards θvacuum simulation in lattice QCD Hidenori Fukaya YITP, Kyoto Univ. Collaboration with S.Hashimoto (KEK), T.Hirohashi (Kyoto Univ.), K.Ogawa(Sokendai),
QCD thermodynamic on the lattice and the hadron resonance gas Péter Petreczky Physics Department and RIKEN-BNL ECT*/LOEWE/NIKHEF/CATHIE workshop, Trento,
N F = 3 Critical Point from Canonical Ensemble χ QCD Collaboration: A. Li, A. Alexandru, KFL, and X.F. Meng Finite Density Algorithm with Canonical Approach.
Effective field theories for QCD with rooted staggered fermions Claude Bernard, Maarten Golterman and Yigal Shamir Lattice 2007, Regensburg.
1 Hiroshi Ohki, Tetsuya Onogi (YITP, Kyoto U.) Hideo Matsufuru (KEK) October High precision study of B*Bπ coupling in unquenched QCD.
Lattice 07, Regensburg, 1 Magnetic Moment of Vector Mesons in Background Field Method Structure of vector mesons Background field method Some results x.
Phase Fluctuations near the Chiral Critical Point Joe Kapusta University of Minnesota Winter Workshop on Nuclear Dynamics Ocho Rios, Jamaica, January 2010.
Fluctuations and Correlations of Conserved Charges in QCD at Finite Temperature with Effective Models Wei-jie Fu, ITP, CAS Collaborated with Prof. Yu-xin.
Toward an Improved Determination of Tc with 2+1 Flavors of Asqtad Fermions C. DeTar University of Utah The HotQCD Collaboration July 30, 2007.
Pavel Buividovich (Regensburg). To the memory of my Teacher, excellent Scientist, very nice and outstanding Person, Mikhail Igorevich Polikarpov.
Pavel Buividovich (Regensburg). To the memory of my Teacher, excellent Scientist, very nice and outstanding Person, Prof. Dr. Mikhail Igorevich Polikarpov.
Chiral Magnetic Effect on the Lattice Komaba, June 13, 2012 Arata Yamamoto (RIKEN) AY, Phys. Rev. Lett. 107, (2011) AY, Phys. Rev. D 84,
1 Heavy quark Potentials in Full QCD Lattice Simulations at Finite Temperature Yuu Maezawa (The Univ. of Tokyo) Tsukuba-Tokyo collaboration Univ. of Tsukuba.
The N to Delta transition form factors from Lattice QCD Antonios Tsapalis University of Athens, IASA EINN05, Milos,
1 Thermodynamics of two-flavor lattice QCD with an improved Wilson quark action at non-zero temperature and density Yu Maezawa (Univ. of Tokyo) In collaboration.
Finite Density with Canonical Ensemble and the Sign Problem Finite Density Algorithm with Canonical Ensemble Approach Finite Density Algorithm with Canonical.
A direct relation between confinement and chiral symmetry breaking in temporally odd-number lattice QCD Lattice 2013 July 29, 2013, Mainz Takahiro Doi.
1.Introduction 2.Formalism 3.Results 4.Summary I=2 pi-pi scattering length with dynamical overlap fermion I=2 pi-pi scattering length with dynamical overlap.
Lecture Dirac 1927: search for a wave equation, in which the time derivative appears only in the first order ( Klein- Gordon equation:
1 Some Field Theoretical Issues of the Chiral Magnetic Effect Hai-cang Ren The Rockefeller University & CCNU with De-fu Hou, Hui Liu JHEP 05(2011)046 CPODD.
Study of the QCD Phase Structure through High Energy Heavy Ion Collisions Bedanga Mohanty National Institute of Science Education and Research (NISER)
Topology conserving actions and the overlap Dirac operator (hep-lat/ ) Hidenori Fukaya Yukawa Institute, Kyoto Univ. Collaboration with S.Hashimoto.
Eigo Shintani (KEK) (JLQCD Collaboration) KEKPH0712, Dec. 12, 2007.
Lattice studies of topologically nontrivial non-Abelian gauge field configurations in an external magnetic field in an external magnetic field P. V. Buividovich.
Instanton vacuum at finite density Hyun-Chul Kim Department of Physics Inha University S.i.N. and H.-Ch.Kim, Phys. Rev. D 77, (2008) S.i.N., H.Y.Ryu,
1 Electroweak baryon number violation and a “topological condensate” Steven Bass / Innsbruck July Baryon asymmetry in the Universe:
1 Approaching the chiral limit in lattice QCD Hidenori Fukaya (RIKEN Wako) for JLQCD collaboration Ph.D. thesis [hep-lat/ ], JLQCD collaboration,Phys.Rev.D74:094505(2006)[hep-
Scaling study of the chiral phase transition in two-flavor QCD for the improved Wilson quarks at finite density H. Ohno for WHOT-QCD Collaboration The.
Review of recent highlights in lattice calculations at finite temperature and finite density Péter Petreczky Symmetries of QCD at T>0 : chiral and deconfinement.
Color neutrality effects in the phase diagram of the PNJL model A. Gabriela Grunfeld Tandar Lab. – Buenos Aires - Argentina In collaboration with D. Blaschke.
Pavel Buividovich (Regensburg). Collective motion of chiral fermions High-energy physics: High-energy physics: Quark-gluon plasma Quark-gluon plasma Hadronic.
1 QCD Thermodynamics at High Temperature Peter Petreczky Large Scale Computing and Storage Requirements for Nuclear Physics (NP), Bethesda MD, April 29-30,
Pion mass difference from vacuum polarization E. Shintani, H. Fukaya, S. Hashimoto, J. Noaki, T. Onogi, N. Yamada (for JLQCD Collaboration) December 5,
RIKEN ADVANCED INSTITUTE FOR COMPUTATIONAL SCIENCE Lattice QCD at non-zero Temperature and Density Akira Ukawa Deputy Director, RIKEN AICS, Japan 18 August.
JPS2010springT. Umeda (Hiroshima)1 ウィルソンクォークを用いた N f =2+1 QCD の熱力学量の研究 Takashi Umeda (Hiroshima Univ.) for WHOT-QCD Collaboration JPS meeting, Okayama.
1 Lattice Quantum Chromodynamics 1- Literature : Lattice QCD, C. Davis Hep-ph/ Burcham and Jobes By Leila Joulaeizadeh 19 Oct
Chiral symmetry breaking and Chiral Magnetic Effect in QCD with very strong magnetic field P.V.Buividovich (ITEP, Moscow, Russia and JIPNR “Sosny” Minsk,
1 Chemical freezeout curve from heavy ion data coincides with freezeout T at RHIC and SPC J. Stachel & P. Braun- Munzinger.
Lattice QCD at finite density
Towards the QCD equation of state at the physical point using Wilson fermion WHOT-QCD Collaboration: T. Umeda (Hiroshima Univ.), S. Ejiri (Niigata Univ.),
Lattice 2006 Tucson, AZT.Umeda (BNL)1 QCD thermodynamics with N f =2+1 near the continuum limit at realistic quark masses Takashi Umeda (BNL) for the RBC.
1 Heavy quark potential in full QCD lattice simulations at finite temperature Yuu Maezawa (The Univ. of Tokyo) Tsukuba-Tokyo collaboration Univ. of Tsukuba.
K.M.Shahabasyan, M. K. Shahabasyan,D.M.Sedrakyan
Toru T. Takahashi with Teiji Kunihiro ・ Why N*(1535)? ・ Lattice QCD calculation ・ Result TexPoint fonts used in EMF. Read the TexPoint manual before you.
Quarks Quarks in the Quark-Gluon Plasma Masakiyo Kitazawa (Osaka Univ.) Tokyo Univ., Sep. 27, 2007 Lattice Study of F. Karsch and M.K., arXiv:
An Introduction to Lattice QCD and Monte Carlo Simulations Sinya Aoki Institute of Physics, University of Tsukuba 2005 Taipei Summer Institute on Particles.
Numerical study of real-time chiral plasma instability Pavel Buividovich (Regensburg)
1 NJL model at finite temperature and chemical potential in dimensional regularization T. Fujihara, T. Inagaki, D. Kimura : Hiroshima Univ.. Alexander.
Deconfinement and chiral transition in finite temperature lattice QCD Péter Petreczky Deconfinement and chiral symmetry restoration are expected to happen.
Matter-antimatter coexistence method for finite density QCD
Origin of Nucleon Mass in Lattice QCD
Thermodynamics of QCD in lattice simulation with improved Wilson quark action at finite temperature and density WHOT-QCD Collaboration Yu Maezawa (Univ.
Color Superconductivity in dense quark matter
Topology conserving gauge action and the overlap Dirac operator
Chengfu Mu, Peking University
Jun Nishimura (KEK, SOKENDAI) JLQCD Collaboration:
EoS in 2+1 flavor QCD with improved Wilson fermion
Presentation transcript:

Lattice Fermion with Chiral Chemical Potential NTFL workshop, Feb. 17, 2012 Arata Yamamoto (University of Tokyo) AY, Phys. Rev. Lett. 107, (2011) AY, Phys. Rev. D 84, (2011)

Introduction “sign problem” In lattice QCD at finite density, For small chemical potential, reweighting, Taylor expansion, canonical ensemble, imaginary chemical potential, density of states, … two-color QCD, isospin chemical potential, chiral chemical potential For large chemical potential,

[K.Fukushima, D.E.Kharzeev, H.J.Warringa (2008)] Chiral chemical potential Chiral chemical potential produces a chirally imbalanced matter. right-handed Fermi sea left-handed Fermi sea

Wilson-Dirac operator NO sign problem !!

Chiral Magnetic Effect [D.E.Kharzeev, L.D.McLerran, H.J.Warringa (2007)] Early Universe [from NASA’s web page][from BNL’s web page] heavy-ion collision (RHIC&LHC) [from KEK’s web page] chiral magnetic effect: charge separation induced by a strong magnetic field via the axial anomaly, i.e., nontrivial topology

cf.) permanent magnet ~ 10 2 eV 2 magnetar ~ 10 MeV 2 magnetic field ~ 10 4 MeV 2 non-central collision of heavy ions beam

magnetic field assumption: quarks are massless and deconfined. electric current If L = R, the net current is zero. If L R, the net current is nonzero.

the index theorem: Globally, Locally, topological fluctuation in lattice QCD [from D.Leinweber’s web page]

topological fluctuation beam magnetic field beam “event-by-event” charge separation electric current

SU(2) quenched QCD with the overlap fermion Chiral magnetic effect in lattice QCD [P.V.Buividovich, M.N.Chernodub, E.V.Luschevskaya, M.I.Polikarpov (2009)] instanton solution & 2+1 flavor QCD with the domain-wall fermion [M.Abramczyk, T.Blum, G.Petropoulos, R.Zhou (2009)]

magnetic field electric current positive helicitynegative helicity Chiral chemical potential

[K.Fukushima, D.E.Kharzeev, H.J.Warringa (2008)] the Dirac equation coupled with a background magnetic field Induced current magnetic field electric current induced electric current

Lattice QCD Simulation full QCD simulation with a finite chiral chemical potential external magnetic fieldvector current chirally imbalanced matter L R

the Wilson gauge action + the Wilson fermion action flavor: lattice size: lattice spacing: fm pion/rho-meson mass: deconfinement phase Simulation setup

Chiral charge density

Induced current

[K.Fukushima, D.E.Kharzeev, H.J.Warringa (2008)] by fitting the lattice data from the Dirac equation Induced current lattice artifacts e.g. dielectric correction [K.Fukushima, M.Ruggieri (2010)] e.g. renormalization physical effects

Systematic Analysis quenched QCD simulation lattice spacing dependence volume dependence quark mass dependence of

Renormalization renormalization factor: cf.) nonperturbative renormalization [L.Maiani, G.Martinelli (1986)] The local vector current is renormalization-group variant on the lattice. discretization artifact: In the continuum limit,

Lattice spacing The induced current depends on the lattice spacing.

Spatial volumeQuark mass The induced current is independent of volume and quark mass. chiral limit

Summary We have performed a lattice QCD simulation with the chiral chemical potential. By applying an external magnetic field, we have obtained the induced current by the chiral magnetic effect. The continuum extrapolation is quantitatively important. chiral symmetry ?