Topology comparison RSE vs. SAGNAC using GWINC S. Chelkowski, H. Müller-Ebhardt, S. Hild 21/09/2009 S. ChelkowskiSlide 1ET Workshop, Erice, 10/2009.

Slides:



Advertisements
Similar presentations
Stefan Hild, Andreas Freise University of Birmingham Roland Schilling, Jerome Degallaix AEI Hannover January 2008, Virgo week, Pisa Advanced Virgo: Wedges.
Advertisements

LSC-Virgo meeting Amsterdam, September 2008 On Aspects of the Advanced Virgo Arm Cavity Design Stefan Hild and Andreas Freise University of Birmingham.
Stefan Hild ASR Group meting, November 2008 Squeezing the best astrophysics out of Advanced Virgo Squeezing the best astrophysics out of Advanced Virgo.
Laser Interferometer Gravitational-wave Detectors: Advancing toward a Global Network Stan Whitcomb LIGO/Caltech ICGC, Goa, 18 December 2011 LIGO-G v1.
Stefan Hild, Giovanni Losurdo and Andreas Freise Virgo week July 2008 Optimization of the Advanced Virgo Sensitivity for astrophysical Sources.
Stefan Hild and A.Freise Advanced Virgo meeting, December 2008 Preliminary Thoughts on the optimal Arm Cavity Finesse of Advanced Virgo.
1st ET General meeting, Pisa, November 2008 The ET sensitivity curve with ‘conventional‘ techniques Stefan Hild and Andreas Freise University of Birmingham.
Stefan Hild, Andreas Freise, Simon Chelkowski University of Birmingham Roland Schilling, Jerome Degallaix AEI Hannover Maddalena Mantovani EGO, Cascina.
Stefan Hild, Andreas Freise, Simon Chelkowski University of Birmingham Roland Schilling, Jerome Degallaix AEI Hannover Maddalena Mantovani EGO, Cascina.
Stefan Hild and Andreas Freise Advanced Virgo meeting, August 2008 Advanced Virgo beam size: Asymmetric ROCs and Coating Thermal Noise.
TeV Particle Astrophysics August 2006 Caltech Australian National University Universitat Hannover/AEI LIGO Scientific Collaboration MIT Corbitt, Goda,
GWADW, May 2012, Hawaii D. Friedrich ICRR, The University of Tokyo K. Agatsuma, S. Sakata, T. Mori, S. Kawamura QRPN Experiment with Suspended 20mg Mirrors.
GWADW 2010 in Kyoto, May 19, Development for Observation and Reduction of Radiation Pressure Noise T. Mori, S. Ballmer, K. Agatsuma, S. Sakata,
Status of LCGT and CLIO Masatake Ohashi (ICRR, The University of TOKYO) and LCGT, CLIO collaborators TAUP2007 Sendai, Japan 2007/9/12.
Design of Stable Power-Recycling Cavities University of Florida 10/05/2005 Volker Quetschke, Guido Mueller.
Einstein gravitational wave Telescope Next steps: from technology reviews to detector design Andreas Freise for the ET WG3 working group , 2nd.
Optical Configuration Advanced Virgo Review Andreas Freise for the OSD subsystem.
Stefan Hild October 2007 LSC-Virgo meeting Hannover Interferometers with detuned arm cavaties.
S. ChelkowskiSlide 1ET Meeting, Hannover 01/2009.
Advanced interferometers for astronomical observations Lee Samuel Finn Center for Gravitational Wave Physics, Penn State.
Advanced Virgo Optical Configuration ILIAS-GW, Tübingen Andreas Freise - Conceptual Design -
Koji Arai – LIGO Laboratory / Caltech LIGO-G v2.
January 12, 2006ILIAS-WG3 Frascati1 Virgo+ & Advanced Virgo B. Mours With material from G. Losurdo, M. Punturo, A. Viceré and others.
1 Thermal noise and high order Laguerre-Gauss modes J-Y. Vinet, B. Mours, E. Tournefier GWADW meeting, Isola d’Elba May 27 th – Jun 2 nd, 2006.
Beams of the Future Mihai Bondarescu, Oleg Kogan, Yanbei Chen, Andrew Lundgreen, Ruxandra Bondarescu, David Tsang A Caltech - AEI - Cornell Collaboration.
LIGO-G R Quantum Noise in Gravitational Wave Interferometers Nergis Mavalvala PAC 12, MIT June 2002 Present status and future plans.
AIGO 2K Australia - Italy Workshop th October th October 2005 Pablo Barriga for AIGO group.
LIGO LaboratoryLIGO-G R Coatings and Their Influence on Thermal Lensing and Compensation in LIGO Phil Willems Coating Workshop, March 21, 2008,
1 Reducing Thermoelastic Noise by Reshaping the Light Beams and Test Masses Research by Vladimir Braginsky, Sergey Strigin & Sergey Vyatchanin [MSU] Erika.
S. ChelkowskiSlide 1LSC Meeting, Amsterdam 09/2008.
Einstein gravitational wave Telescope Which optical topologies are suitable for ET? Andreas Freise for the ET WG3 working group MG12 Paris.
Hiro Yamamoto GWADW Girdwood, Alaska LIGO-G Beam Splitter in aLIGO Hiro Yamamoto LIGO/Caltech BS02 to BS05? larger BS? BS in aLIGO IFO for.
Janyce Franc-Kyoto-GWADW1 Simulation and research for the future ET mirrors Janyce Franc, Nazario Morgado, Raffaele Flaminio Laboratoire des Matériaux.
Janyce Franc Effect of Laguerre Gauss modes on thermal noise Janyce Franc, Raffaele Flaminio, Nazario Morgado, Simon Chelkowski, Andreas Freise,
Cryogenic Xylophone Kyoto May Kentaro Somiya Waseda Inst. for Adv. Study Collaboration work with S.Hild, K.Kokeyama, H.Mueller-Ebhardt, R.Nawrodt,
Equivalence relation between non spherical optical cavities and application to advanced G.W. interferometers. Juri Agresti and Erika D’Ambrosio Aims of.
Laguerre-Gauss Modes for Future Gravitational Wave Detectors Keiko Kokeyama University of Birmingham 2 nd ET Annual Erice, Sicily, Italy
Advanced Virgo: Optical Simulation and Design Advanced Virgo review Andreas Freise for the OSD Subsystem.
Beams of the Future Mihai Bondarescu, Oleg Kogan, Yanbei Chen, Andrew Lundgreen, Ruxandra Bondarescu, David Tsang A Caltech - AEI - Cornell Collaboration.
Opening our eyes to QND technical issues (workshop and open forum) “It’ll be the blind leading the blind” - Stan Whitcomb “You can see a lot by looking”
LIGO-G D Advanced LIGO Systems & Interferometer Sensing & Control (ISC) Peter Fritschel, LIGO MIT PAC 12 Meeting, 27 June 2002.
THE NEXT GENERATIONS OF GRAVITATIONAL WAVE DETECTORS (*) Giovanni Losurdo INFN Firenze – Virgo collaboration (*) GROUND BASED, INTERFEROMETRIC.
ET-ILIAS_GWA joint meeting, Nov Henning Rehbein Detuned signal-recycling interferometer unstableresonance worsesensitivity enhancedsensitivity.
Advanced Virgo: Optical Simulation and Design
A look at interferometer topologies that use reflection gratings
Possible KAGRA Upgrades
Topology comparison RSE vs. SAGNAC using GWINC
KAGRA+ Upgrade Plans Yuta Michimura1, Kentaro Komori1
Overview of quantum noise suppression techniques
Interferometric speed meter as a low-frequency gravitational-wave detector Helge Müller-Ebhardt Max-Planck-Institut für Gravitationsphysik (AEI) and Leibniz.
Is there a future for LIGO underground?
Quantum noise reduction techniques for the Einstein telescope
KAGRA+ Upgrade Plans Yuta Michimura1, Kentaro Komori1
Thermal noise reduction through LG modes
Design of Stable Power-Recycling Cavities
Homodyne readout of an interferometer with Signal Recycling
Possible KAGRA Upgrades
Possibility of Upgrading KAGRA
Homodyne or heterodyne Readout for Advanced LIGO?
Flat-Top Beam Profile Cavity Prototype: design and preliminary tests
Modeling of Advanced LIGO with Melody
KAGRA+ Upgrade Plans Yuta Michimura1, Kentaro Komori1
Possible KAGRA Upgrades
KAGRA+ Upgrade Plans Yuta Michimura1, Kentaro Komori1
“Traditional” treatment of quantum noise
Thermal noise and high order Laguerre-Gauss modes J-Y. Vinet, B
3rd generation ITF sensitivity curve
Alignment Investigations towards Advanced Virgo
Advanced Optical Sensing
The ET sensitivity curve with ‘conventional‘ techniques
Presentation transcript:

Topology comparison RSE vs. SAGNAC using GWINC S. Chelkowski, H. Müller-Ebhardt, S. Hild 21/09/2009 S. ChelkowskiSlide 1ET Workshop, Erice, 10/2009

Overview  Intro & Motivation  Noise coupling differences & similarities  Displacement noise in a 2- & 4-mirror cavity  Beam geometry influence on thermal noise  GWINC model  Results  Conclusion S. ChelkowskiET Workshop, Erice, 10/2009Slide 2

ET note on QND review S. ChelkowskiET Workshop, Erice, 10/2009Slide 3 Conclusion Sagnac Topology seems to give the best quantum noise performance

More realistic comparison of Sagnac and RSE topology S. ChelkowskiET Workshop, Erice, 10/2009Slide 4 RSESAGNAC

Noise coupling – Sagnac compared to RSE  Quantum noise characteristic change  How do various displacement noises couple more due to four mirror cavities, e.g. TN, Seismic noise, etc...  Beam geometry changes and influences TN further  Higher losses in four mirror arm cavity  Etc... S. ChelkowskiET Workshop, Erice, 10/2009Slide 5

Coupling of displacement noises S. ChelkowskiET Workshop, Erice, 10/2009Slide 6 Cavity DesignSignalNoise For two mirrors of the 4 mirror cavity: Signal: Noise:

Beam geometry changes affect the TN  Beam geometry on mirror surface depends on incidence angle Initial beam shape defined by: changes into: S. ChelkowskiET Workshop, Erice, 10/2009Slide 7 Take clipping loss into account in the following analysis Note Top view Front view

Beam geometry in the 4 mirror cavity  Mirror sizes used: r=31cm  Round beam with w=12cm has clipping loss of 1ppm S. ChelkowskiET Workshop, Erice, 10/2009Slide 8 Beam size on one of the four arm cavity mirrors Resulting Beam w x = 12cm & w y = 10cm

Consequences for the thermal noise S. ChelkowskiET Workshop, Erice, 10/2009Slide 9 Coating Brownian thermal noise: PSD: CBTN adaptation to elliptical beam: with Beam intensity distribution: Bessel function of 0. order with, we find & Analytically not solvable! Numerical integration

Result for CBTN S. ChelkowskiET Workshop, Erice, 10/2009Slide 10 CBTN for elliptical beam shape using the minor beam width The same was done for the Substrate Brownian thermal noise! with CBTN correction factor

Result for SBTN S. ChelkowskiET Workshop, Erice, 10/2009Slide 11 CBTN for elliptical beam shape using the minor beam width with SBTN correction factor

Result for our specific case S. ChelkowskiET Workshop, Erice, 10/2009Slide 12

Current model status  Single detector  L = 10km  Underground  Seismic noise reduced  Gravity gradient noise reduced  Adapted thermal noises & suspension model  Optimisation parameters  Input laser power P  SR, ITM & PRM transmissivity  Tuning of SRM  Readout quadrature with homodyne detector S. ChelkowskiET Workshop, Erice, 10/2009Slide 13

Things to keep in mind  This is a topology analysis and there is no intension to create a new baseline sensitivity curve  Following sensitivities are lower than the ones presented on the ET webpage  No magical factor used e.g. for the grav. gradient noise  No squeezing used  No cryogenic techniques  Nevertheless the following comparison is valid  The model can be changed later and a higher performing configuration can be found via optimisation S. ChelkowskiET Workshop, Erice, 10/2009Slide 14

Figure of merit and optimisation  BHBH and NSNS inspiral ranges  Give parameters of standard candles.  BHBH: Mass each 30Msol, Distance 10Mpc  NSNS: Mass each 1.4Msol, Distance 23Mpc  5D parameter space is scanned automatically for the optimal configuration with an adaptive resolution S. ChelkowskiET Workshop, Erice, 10/2009Slide 15

RSE topology results – tuned configuration S. ChelkowskiET Workshop, Erice, 10/2009Slide 16 BHBH: 9736MpcNSNS: 871Mpc

RSE topology results – 5D - auto optimisation S. ChelkowskiET Workshop, Erice, 10/2009Slide 17 BHBH optimisation NSNS optimisation BHBH: 11776Mpc NSNS: 949Mpc

SAGNAC topology results – 5D - auto optimisation S. ChelkowskiET Workshop, Erice, 10/2009Slide 18 BHBH: 14836MpcNSNS: 1282Mpc

Comparison of results – BHBH optimisation - I S. ChelkowskiET Workshop, Erice, 10/2009Slide 19 RSE – tuned SRSAGNAC-optimised BHBH inspiral range for Sagnac topology 52% larger Event rate increased by a factor of 3.5

Comparison of results – BHBH optimisation - II S. ChelkowskiET Workshop, Erice, 10/2009Slide 20 RSE – optimised BHBH inspiral range for Sagnac topology 26% larger Event rate increased by a factor of 2.0 SAGNAC-optimised

Comparison of results – NSNS optimisation - I S. ChelkowskiET Workshop, Erice, 10/2009Slide 21 RSE – tuned SR BHBH inspiral range for Sagnac topology 47% larger Event rate increased by a factor of 3.2 SAGNAC-optimised

Comparison of results – NSNS optimisation - II S. ChelkowskiET Workshop, Erice, 10/2009Slide 22 RSE – optimised BHBH inspiral range for Sagnac topology 35% larger Event rate increased by a factor of 2.5 SAGNAC-optimised

Conclusion  Sagnac topology performs better than RSE in this analysis  BHBH inspiral range increase by 26%-52%  NSNS inspiral range increase by 35%-47%  Next steps:  Use Markov Chain Monte Carlo method for the optimisation, first tests already done  How does it perform?  Useful for comparison of other topologies in the future  Write ET note about this topology analysis  Think about alignment requirement changes for 4-mirror cavity S. ChelkowskiET Workshop, Erice, 10/2009Slide 23

S. ChelkowskiET Workshop, Erice, 10/2009Slide 24 THE END...

Additional slides S. ChelkowskiET Workshop, Erice, 10/2009Slide 25

PRM transmissivity algorithm check - I S. ChelkowskiET Workshop, Erice, 10/2009Slide 26 Tuning T prm for a fixed config

PRM transmissivity algorithm check - I S. ChelkowskiET Workshop, Erice, 10/2009Slide 27 Auto optimisationManual optimisation