CASS/UCSD IPS 2013 Remote Sensing Solar Wind Parameters B.V. Jackson Center for Astrophysics and Space Sciences, University of California at San Diego,

Slides:



Advertisements
Similar presentations
K. Fujiki, H. Ito, M. Tokumaru Solar-Terrestrial Environment Laboratory (STELab), Nagoya University. SOLAR WIND FORECAST BY USING INTERPLANETARY SCINTILLATION.
Advertisements

H.-S. Yu Center for Astrophysics and Space Sciences, University of California at San Diego, LaJolla, CA, USA 3D-MHD Models Driven by IPS
Global Properties of Heliospheric Disturbances Observed by Interplanetary Scintillation M. Tokumaru, M. Kojima, K. Fujiki, and M. Yamashita (Solar-Terrestrial.
M. J. Reiner, 1 st STEREO Workshop, March, 2002, Paris.
Solar wind in the outer heliosphere: IPS observations at the decameter wavelengths. N.N. Kalinichenko, I.S. Falkovich, A.A. Konovalenko, M.R. Olyak, I.N.
EISCAT Tromsø. Progress in Interplanetary Scintillation Bill Coles, University of California at San Diego A. The Solar Wind: B. Radio Scattering: C. Observations:
Interplanetary Scintillations and the Acceleration of the Solar Wind Steven R. Spangler …. University of Iowa.
What coronal parameters determine solar wind speed? M. Kojima, M. Tokumaru, K. Fujiki, H. Itoh and T. Murakami Solar-Terrestrial Environment Laboratory,
CASS/UCSD SALE 2014 An Account of Space Weather at Comet 67P/C-G H.-S. Yu, P.P. Hick, A. Buffington University of California at San Diego, LaJolla, California,
CASS/UCSD AFOSR 2014 IPS 3D Velocity and Density Analysis B.V. Jackson Center for Astrophysics and Space Sciences, University of California at San Diego,
CASS/UCSD KSSS D Analysis of Remote-sensed Heliospheric Data B.V. Jackson, H.-S. Yu, P.P. Hick, A. Buffington University of California at San Diego,
2011-Aug-11/AOGS 2011 Global Observations of the Solar Wind with STEL IPS Array M. Tokumaru, K. Fujiki, T. Iju, M. Hirota, M. Noda, and M. Kojima (STEL,
Solar System Physics Group Heliospheric physics with LOFAR Andy Breen, Richard Fallows Solar System Physics Group Aberystwyth University Mario Bisi Center.
Remote Sensing of Solar Wind Velocity Applying IPS Technique using MEXART Remote Sensing of Solar Wind Velocity Applying IPS Technique using MEXART Mejía-Ambriz.
Interplanetary Scintillation Observations of the Solar Wind Using SWIFT and Upgraded STEL Multi-station System M. Tokumaru, K. Fujiki, and T. Iju (STEL,
Upgrade of STEL Multi-Station Interplanetary Scintillation System and Recent Observations of the Solar Wind Munetoshi Tokumaru, Masayoshi Kojima, Ken ’
Solar System Physics Group Heliospheric studies with LOFAR and EISCAT-3D Andy Breen, Mario Bisi & Richard Fallows Aberystwyth University.
CASS/UCSD - Jeju 2015 A Jets in the Heliosphere: A Solar Wind Component B.V. Jackson, H.-S. Yu, P.P. Hick, and A. Buffington, Center for Astrophysics and.
The investigations of the solar wind with the large decametric radio telescopes of Ukraine Falkovych I.S. 1, Konovalenko A.A 1, Kalinichenko N.N. 1, Olyak.
Why Solar Electron Beams Stop Producing Type III Radio Emission Hamish Reid, Eduard Kontar SUPA School of Physics and Astronomy University of Glasgow,
TO THE POSSIBILITY OF STUDY OF THE EXTERNAL SOLAR WIND THIN STRUCTURE IN DECAMETER RADIO WAVES Marina Olyak Institute of Radio Astronomy, 4 Chervonopraporna,
Solar System Physics Group IPS Using EISCAT and MERLIN: Extremely-Long Baseline Observations at Multiple Frequencies R.A.Fallows, A.R.Breen, M.M.Bisi,
Intrinsic Short Term Variability in W3-OH and W49N Hydroxyl Masers W.M. Goss National Radio Astronomy Observatory Socorro, New Mexico, USA A.A. Deshpande,
InterPlanetary Scintillation IPS induced Pluripotent Stem cell iPS.
Evidence for Anisotropy and Intermittency in the Turbulent Interstellar Plasma Bill Coles, University of California, San Diego 1. It had been thought that.
-1- Solar wind turbulence from radio occultation data Chashei, I.V. Lebedev Physical Institute, Moscow, Russia Efimov, A.I., Institute of Radio Engineering.
Global Structure of the Inner Solar Wind and it's Dynamic in the Solar Activity Cycle from IPS Observations with Multi-Beam Radio Telescope BSA LPI Chashei.
CASS/UCSD ILWS 2009 SMEI 3D reconstructions of density behind shocks B.V. Jackson, P.P. Hick, A. Buffington, M.M. Bisi, J.M. Clover, S. Hamilton Center.
1 Center for Astrophysics and Space Sciences, University of California, San Diego 9500 Gilman Drive #0424, La Jolla, CA , U.S.A
1 Center for Astrophysics and Space Sciences, University of California, San Diego 9500 Gilman Drive #0424, La Jolla, CA , U.S.A
1 Center for Astrophysics and Space Sciences, University of California, San Diego 9500 Gilman Drive #0424, La Jolla, CA , U.S.A
1 Center for Astrophysics and Space Sciences, University of California, San Diego 9500 Gilman Drive #0424, La Jolla, CA , U.S.A
IPS 3D reconstructions and their comparison with STEREO and Wind spacecraft Mario M. Bisi 1 Bernard V. Jackson 1, John M. Clover 1,
1 Center for Astrophysics and Space Sciences, University of California, San Diego 9500 Gilman Drive #0424, La Jolla, CA , U.S.A
V f λ.
Center for Astrophysics and Space Sciences, University of California, San Diego 9500 Gilman Drive #0424, La Jolla, CA , U.S.A
1 Center for Astrophysics and Space Sciences, University of California, San Diego 9500 Gilman Drive #0424, La Jolla, CA , U.S.A
CASS/UCSD Dusan_CCMC_2013 Heliospheric Solar Wind Forecasting Using IPS Slides For A Possible CCMC Presentation 2013 Introduction:
How can we measure turbulent microscales in the Interstellar Medium? Steven R. Spangler, University of Iowa.
1 CASS, University of California, San Diego, U.S.A. ; 2 STFC Rutherford Appleton Laboratory, UK; 3 George Mason University, U.S.A.; 4 NASA/GSFC,
CASS/UCSD-STELab AOGS_2009 Solar Mass Ejection Imager (SMEI) 3D-reconstructions of the Inner Heliosphere Bernard V. Jackson, P. Paul Hick, Andrew Buffington,
IPS tomography IPS-MHD tomography. Since Hewish et al. reported the discovery of the interplanetary scintillation (IPS) phenomena in 1964, the IPS method.
CASS/UCSD STEL 2016 Iterated Time-dependent IPS 3D-MHD Models B.V. Jackson Center for Astrophysics and Space Sciences, University of California at San.
CASS/UCSD RSW Space Weather Forecasting from IPS Data Sets M. Tokumaru Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya ,
CASS/UCSD SWG SMEI observations and comparison with STEREO SMEI direct observations and 3D-reconstruction measurements and their comparison with.
Solar System Physics Group Heliospheric physics with LOFAR Andy Breen, Richard Fallows Solar System Physics Group Aberystwyth University Mario Bisi Center.
H.-S. Yu 1, B.V. Jackson 1, P.P. Hick 1, A. Buffington 1, M. M. Bisi 2, D. Odstrcil 3,4, M. Tokumaru 5 1 CASS, UCSD, USA ; 2 STFC RALab, Harwell Oxford,
Using World Interplanetary Scintillation Systems
B.V. Jackson H.-S. Yu, P.P. Hick, A. Buffington,
B.V. Jackson, H.-S. Yu, P.P. Hick, and A. Buffington,
Driving 3D-MHD codes Using the UCSD Tomography
The Worldwide Interplanetary Scintillation (IPS) Stations (WIPSS) Network Mario M. Bisi [1], J. Americo Gonzalez-Esparza[2][3][4],
Institute for Space-Earth Environmental Research (ISEE),
Interplanetary scintillation of strong sources during the descending phase near the minimum of 23 solar activity cycle Chashei I1., Glubokova1,2 S., Glyantsev1,2.
H.-S. Yu1, B.V. Jackson1, P.P. Hick1,
Determination of the North-South Heliospheric Magnetic Field from Inner-Corona Closed-Loop Propagation B.V. Jackson Center for Astrophysics and Space Sciences,
ICME in the Solar Wind from STEL IPS Observations
B.V. Jackson, and P.P. Hick, A. Buffington, M.M. Bisi, J.M. Clover
The Dynamic Character of the Polar Solar Wind
IPS g-value Measurements
2014SWW - S9 3D Reconstruction of IPS Remote-sensing Data: Global Solar Wind Boundaries for Driving 3D-MHD Models Hsiu-Shan Yu1, B.V. Jackson1, P.P. Hick1,
ST23-D2-PM2-P-013 The UCSD Kinematic Global Solar Wind Boundary for use in ENLIL 3D-MHD Forecasting Bernard JACKSON1#+, Hsiu-Shan YU1, Paul HICK1, Andrew.
IPS Heliospheric Analyses (STELab)
Exploration of Solar Magnetic Fields from Propagating GONG Magnetograms Using the CSSS Model and UCSD Time-Dependent Tomography H.-S. Yu1, B. V. Jackson1,
B.V. Jackson H.-S. Yu, P.P. Hick, A. Buffington, M. Tokumaru
Munetoshi Tokumaru (ISEE, Nagoya University)
B.V. Jackson H.-S. Yu, P.P. Hick, A. Buffington, M. Tokumaru
Steven R. Spangler University of Iowa
Steven R. Spangler University of Iowa
Investigation of Heliospheric Faraday Rotation Due to a Coronal Mass Ejection (CME) Using the LOw Frequency ARray (LOFAR) and Space-Based Imaging Techniques.
Presentation transcript:

CASS/UCSD IPS 2013 Remote Sensing Solar Wind Parameters B.V. Jackson Center for Astrophysics and Space Sciences, University of California at San Diego, LaJolla, CA, USA Masayoshi The Ability of Radio Heliospheric Remote Sensing Observations to Provide Global Solar Wind Parameters ftp://cass185.ucsd.edu/Presentations/2013_jeju

CASS/UCSD IPS 2013 Remote Sensing Solar Wind Parameters More Details IPS (three site- one site)

CASS/UCSD IPS 2013 Remote Sensing Solar Wind Parameters IPS Radio Systems The Ootacamund (Ooty), India off-axis parabolic cylinder 530 m long and 30 m wide (15,900 m 2 ) operating at a nominal frequency of MHz. New STELab IPS array in Toyokawa (3,432 m 2 array now operates well – year-round operation began in 2011)

CASS/UCSD IPS 2013 Remote Sensing Solar Wind Parameters A model of the power spectra of density fluctuations To calculate solar wind velocities using a single IPS station, we use a theoretical power spectrum: an integration of scattering layers along the line of sight (z). The spectrum depends on: λ, ε, v, Θ, α (isotropic medium). Frequency of intensity fluctuations Diffractive function (Fresnel function) Visibility function of the source Heliocentric distance at the region of IPS (point P) Wave number of solar wind irregularities q x ² + q y ² =q² Turbulence spectrum follows a potential law α ≈ 3.5 ± 0.5 Solar wind velocity Example of the model (log-log): MEXART and STEL observing frequencies. Fresnel knee Mejia-Ambriz, J., et al., 2013, AGU 2013 Presentation, May, Cancoon, Mexico.

CASS/UCSD IPS 2013 Remote Sensing Solar Wind Parameters Comparison between Spectrum Fitting and Cross Correlation Methods Spectrum Fitting Method (Single-station meas.) Speed V 1st. =459km/s Axial Ratio=1.07 Spectral Index=3.8 3C /9/3 Cross Correlation Method (3-station meas.) Speed V 3st. = 457±13 km/s from IPS obs. for 3C273 in 2012 V3st. (km/s) V1st. (km/s) Correlation ~0.47 V 1st /V 3st =1.04±0.24 (Courtesy of M. Tokumaru) Tokumaru, M., et al., 2013, AOGS 2013 Presentation, June, Brisbane, Australia.

CASS/UCSD IPS 2013 Remote Sensing Solar Wind Parameters

CASS/UCSD IPS 2013 Remote Sensing Solar Wind Parameters

CASS/UCSD IPS 2013 Remote Sensing Solar Wind Parameters

CASS/UCSD IPS 2013 Remote Sensing Solar Wind Parameters The Marquardt Method 1) Inverse Hessian Method –A * x m = b –A * x i = -Grad(chiSq) + b –x m – x i = A -1 * (-Grad(chiSq) ) 2) Gradient Descent Method –dx = C * Grad(chiSq)

CASS/UCSD IPS 2013 Remote Sensing Solar Wind Parameters STEL: Single Site: Diff: AlphaARElong.theta STELSSDiff

CASS/UCSD IPS 2013 Remote Sensing Solar Wind Parameters AlphaARElong.theta STELSSDiff

CASS/UCSD IPS 2013 Remote Sensing Solar Wind Parameters AlphaARElong.theta STELSSDiff

CASS/UCSD IPS 2013 Remote Sensing Solar Wind Parameters v0 = 600

CASS/UCSD IPS 2013 Remote Sensing Solar Wind Parameters V0=

CASS/UCSD IPS 2013 Remote Sensing Solar Wind Parameters