The private capacities of a secret shared reference frame Patrick Hayden (McGill) with: PRA 75:052329 (2005) ??? Stephen Bartlett Robert Spekkens arXiv:quant-ph/0506260.

Slides:



Advertisements
Similar presentations
1+eps-Approximate Sparse Recovery Eric Price MIT David Woodruff IBM Almaden.
Advertisements

The Learnability of Quantum States Scott Aaronson University of Waterloo.
Quantum t-designs: t-wise independence in the quantum world Andris Ambainis, Joseph Emerson IQC, University of Waterloo.
Pretty-Good Tomography Scott Aaronson MIT. Theres a problem… To do tomography on an entangled state of n qubits, we need exp(n) measurements Does this.
QMA/qpoly PSPACE/poly: De-Merlinizing Quantum Protocols Scott Aaronson University of Waterloo.
Tony Short University of Cambridge (with Sabri Al-Safi – PRA 84, (2011))
Quantum Computing MAS 725 Hartmut Klauck NTU
Spin chains and channels with memory Martin Plenio (a) & Shashank Virmani (a,b) quant-ph/ , to appear prl (a)Institute for Mathematical Sciences.
Fixing the lower limit of uncertainty in the presence of quantum memory Archan S. Majumdar S. N. Bose National Centre for Basic Sciences, Kolkata Collaborators:
Quantum data locking, enigma machines and entropic uncertainty relations Saikat Guha, Patrick Hayden, Hari Krovi, Seth Lloyd, Cosmo Lupo, Jeffrey H. Shapiro,
Quantum information as high-dimensional geometry Patrick Hayden McGill University Perspectives in High Dimensions, Cleveland, August 2010.
Short course on quantum computing Andris Ambainis University of Latvia.
Separable States can be Used to Distribute Entanglement Toby Cubitt 1, Frank Verstraete 1, Wolfgang Dür 2, and Ignacio Cirac 1 1 Max Planck Institüt für.
Emergence of Quantum Mechanics from Classical Statistics.
Classical capacities of bidirectional channels Charles Bennett, IBM Aram Harrow, MIT/IBM, Debbie Leung, MSRI/IBM John Smolin,
Quantum communication from Alice to Bob Andreas Winter, Bristol quant-ph/ Aram Harrow, MIT Igor Devetak, USC.
Quantum Cryptography Qingqing Yuan. Outline No-Cloning Theorem BB84 Cryptography Protocol Quantum Digital Signature.
Superdense coding. How much classical information in n qubits? Observe that 2 n  1 complex numbers apparently needed to describe an arbitrary n -qubit.
Quantum Circuits for Clebsch- GordAn and Schur duality transformations D. Bacon (Caltech), I. Chuang (MIT) and A. Harrow (MIT) quant-ph/ more.
Avraham Ben-Aroya (Tel Aviv University) Oded Regev (Tel Aviv University) Ronald de Wolf (CWI, Amsterdam) A Hypercontractive Inequality for Matrix-Valued.
Quantum Cryptography Marshall Roth March 9, 2007.
Quantum Circuits for Clebsch- Gordon and Schur duality transformations D. Bacon (Caltech), I. Chuang (MIT) and A. Harrow (MIT) quant-ph/
A Family of Quantum Protocols Igor Devetak, IBM Aram Harrow, MIT Andreas Winter, Bristol quant-ph/ IEEE Symposium on Information Theory June 28,
BB84 Quantum Key Distribution 1.Alice chooses (4+  )n random bitstrings a and b, 2.Alice encodes each bit a i as {|0>,|1>} if b i =0 and as {|+>,|->}
Gentle tomography and efficient universal data compression Charlie Bennett Aram Harrow Seth Lloyd Caltech IQI Jan 14, 2003.
Coherent Classical Communication Aram Harrow (MIT) quant-ph/
Lo-Chau Quantum Key Distribution 1.Alice creates 2n EPR pairs in state each in state |  00 >, and picks a random 2n bitstring b, 2.Alice randomly selects.
NO INPUT IS DETECTED ON RGB1. Quantum Circuits for Clebsch- Gordon and Schur duality transformations D. Bacon (Caltech), I. Chuang (MIT) and A. Harrow.
EECS 598 Fall ’01 Quantum Cryptography Presentation By George Mathew.
Paraty, Quantum Information School, August 2007 Antonio Acín ICFO-Institut de Ciències Fotòniques (Barcelona) Quantum Cryptography.
Quantum Communication, Quantum Entanglement and All That Jazz Mark M. Wilde Communication Sciences Institute, Ming Hsieh Department of Electrical Engineering,
Quantum Shannon Theory Patrick Hayden (McGill) 17 July 2005, Q-Logic Meets Q-Info.
Introduction to Quantum Shannon Theory Patrick Hayden (McGill University) 12 February 2007, BIRS Quantum Structures Workshop | 
Is Communication Complexity Physical? Samuel Marcovitch Benni Reznik Tel-Aviv University arxiv
Quantum Information, Communication and Computing Jan Kříž Department of physics, University of Hradec Králové Doppler Institute for mathematical physics.
1 Introduction to Quantum Information Processing QIC 710 / CS 667 / PH 767 / CO 681 / AM 871 Richard Cleve DC 2117 Lecture 16 (2011)
Feynman Festival, Olomouc, June 2009 Antonio Acín N. Brunner, N. Gisin, Ll. Masanes, S. Massar, M. Navascués, S. Pironio, V. Scarani Quantum correlations.
A Few Simple Applications to Cryptography Louis Salvail BRICS, Aarhus University.
Paraty, Quantum Information School, August 2007 Antonio Acín ICFO-Institut de Ciències Fotòniques (Barcelona) Quantum Cryptography (III)
Quantum Information Jan Guzowski. Universal Quantum Computers are Only Years Away From David’s Deutsch weblog: „For a long time my standard answer to.
QCCC07, Aschau, October 2007 Miguel Navascués Stefano Pironio Antonio Acín ICFO-Institut de Ciències Fotòniques (Barcelona) Cryptographic properties of.
Q UANTUM C OMMUNICATION P ART 2 Aditi Harish-Chandra Research Institute, India.
CSCI 172/283 Fall 2010 Hash Functions, HMACs, and Digital Signatures.
Quantum Convolutional Coding for Distillation and Error Correction Mark M. Wilde Communication Sciences Institute, Ming Hsieh Department of Electrical.
Counterexamples to the maximal p -norm multiplicativity conjecture Patrick Hayden (McGill University) || | | N(½)N(½) p C&QIC, Santa Fe 2008.
Quantum Teleportation and Bit Commitment Chi-Yee Cheung Chung Yuan Christian University June 9, 2009.
Quantum Cryptography Zelam Ngo, David McGrogan. Motivation Age of Information Information is valuable Protecting that Information.
Quantum Information Theory Patrick Hayden (McGill) 4 August 2005, Canadian Quantum Information Summer School.
Coherent Communication of Classical Messages Aram Harrow (MIT) quant-ph/
The Classically Enhanced Father Protocol
Recent Progress in Many-Body Theories Barcelona, 20 July 2007 Antonio Acín 1,2 J. Ignacio Cirac 3 Maciej Lewenstein 1,2 1 ICFO-Institut de Ciències Fotòniques.
Nawaf M Albadia
Quantum Convolutional Coding Techniques Mark M. Wilde Communication Sciences Institute, Ming Hsieh Department of Electrical Engineering, University of.
Optimal Trading of Classical Communication, Quantum Communication, and Entanglement Mark M. Wilde arXiv: ERATO-SORST Min-Hsiu Hsieh 4 th Workshop.
Coherent Classical Communication Aram Harrow, MIT Quantum Computing Graduate Research Fellow Objective Objective ApproachStatus Determine.
1 Conference key-agreement and secret sharing through noisy GHZ states Kai Chen and Hoi-Kwong Lo Center for Quantum Information and Quantum Control, Dept.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
Quantum Cryptography Antonio Acín
Coherent Communication of Classical Messages Aram Harrow (MIT) quant-ph/
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
Random Access Codes and a Hypercontractive Inequality for
Jean Christian Boileau (University of Toronto)
Information-Theoretical Analysis of the Topological Entanglement Entropy and Multipartite correlations Kohtaro Kato (The University of Tokyo) based on.
Unconditional Security of the Bennett 1992 quantum key-distribution protocol over a lossy and noisy channel Kiyoshi Tamaki * *Perimeter Institute for.
Quantum Information Theory Introduction
Quantum Two.
Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Lecture 17 (2005) Richard Cleve DC 3524
Richard Cleve DC 3524 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 667 / Phys 767 C&O 481 / C&O 681 Lecture.
Presentation transcript:

The private capacities of a secret shared reference frame Patrick Hayden (McGill) with: PRA 75: (2005) ??? Stephen Bartlett Robert Spekkens arXiv:quant-ph/

Overview  Shared reference frames:  Secret and not  Perfect privacy:  Classical capacity ' 3 times quantum capacity   - privacy:  Classical capacity ' quantum capacity

(Un)speakable information  Speakable:  Unspeakable: Turn left at the Crab Nebula Left? What is this “left”? Other examples: Phase reference, direction

Lots of previous work There is a communication cost to establishing a shared RF Direction alignment Gisin and Popescu, PRL 83, 423 (1999) Peres and Scudo, PRL 86, 4160 (2001) Bagan et al., PRA 63, (2001) Cartesian frame alignment Chiribella et al., quant-ph/ Bagan et al., quant-ph/ Clock synchronization Jozsa et al., PRL 85, 2010 (2000) “Colour coding” – establishing a common ordering von Korff and Kempe, quant-ph/

RF’s as information resources  Distill to standard form  Schuch et al. PRL 92: (2004)  Quantum and classical communication  Bartlett et al. PRL 91: (2003)  Entanglement manipulation  Verstraete/Cirac PRL 91: (2003)  Key distribution  Walton et al. PRL 91: (2003)  Boileau et al. PRL 92: (2003)  Cryptographic consequences for missing/poor RF  Kitaev et al. PRA 69: (2004)  Harrow et al. quant-ph/

Today’s story  Secret shared references frames as a resource for cryptography  Bartlett, Rudolph, Spekkens PRA 70: (2004) ??? Secret shared reference frame for SU(2) replaces secret key Note: -2 secret reference frames  infinite secret key -1 secret, 1 public reference frame  infinite secret key Alice and Bob share a reference frame for SU(2). Alice sends Bob n spin ½ particles. How many private cbits and qubits can Alice embed in her message?

Alice and Eve’s views n spin ½ particles  E()E()

Representation theory: It makes the heart sing n=1: One spin sent One private cbit or One private qubit n=2: Two spins sent where p j = Tr(   j ). 1-d 3-d One private qutrit Classical:|i i = 1/2|  - i + 3 1/2 /2|n i i |n i i, i=1,...,4 E (|i ih i|) = I/4. Two private cbits!

General decomposition of ( C 2 ) ­ n Projection on H j Depolarization of H jR (Addition of angular momenta) (SU(2) acts irreducibly on H jR and trivially on H jP ) [BRS 20004]: 1) Private qubits go in largest H jR 2) Private cbits made by (Fourier ± superdense) method

Fourier ± superdense in a nutshell dim( H jR ) = 2j+1 dim( H jP ) > dim( H ) jR 8 j < n/2 Superdense coding OK: H jR depolarized Fourier basis OK: phases destroyed Store quantum data in H jR with j = n/2 : Get log( n+1 ) private qubits. Store classical data using Fourier ± superdense method: O( n ) blocks (Fourier), each with O( n 2 ) values (superdense) Get log( Cn 3 ) = 3 log n – const private cbits. Asymptotically able to send three times as many private cbits as qubits

Conferences are worthwhile  QCMC 2004 in Glasgow:  Rob Spekkens: “The private classical capacity of a secret frame is three times its private quantum capacity. You use the (Fourier ± superdense) method.”  Me: “Superdense coding can used to send arbitrary quantum states, not just classical messages.” [HHL 03, HLW 04]  Rob, Stephen Bartlett, me: “Huh. Think this (Fourier ± superdense) thing can be done for quantum states?”

“Huh. Think this can be done for quantum states? If only approximate (but arbitrarily small) indistinguishability is allowed, then both the optimal private classical and quantum rates are both about 3 log(n).

Closing the gap  New version of security:  There is a  0 such that kE(  ) -  0 k 1 ·  for all messages  can be made arbitrarily small for sufficiently large n.  Quantum capacity: True for all |  i 2 H L. Number of private qubits is log(dim H L ).  Classical capacity: True for an orthogonal set of states S = {  i }. Number of private bits is log |S|.  Two halves to the proof  The private classical capacity remains ~3 log(n).  The private quantum capacity  triples from ~log(n) to ~3 log(n). Not unstandard techniques (Fano inequality cha cha.) Not much more unstandard techniques (Random subspace boogie.)

Random subspace boogie Choose the encoding subspace H L at random. How? dim( H jR ) = 2j+1 dim( H jP ) > dim( H ) jR 8 j < n/2 ▪ Assume n is even. Set j max = n/2 – 1 and j min = b n/3 c. ▪ Restrict to j’s in Y = { j min, j min +1,..., j max }. ▪ Set D = 2 j min +1, D  = b D /  c,  > 1. ▪ Choose subspaces H jR ’ µ H jR and H jP ’ µ H jP such that dim( H jR ’) = D and dim( H jP ’) = D . ▪ Working subspace is Choose H L at random from H ’. Always same D, D  for ease of analysis. Depolarized subsystems H jR ’ always bigger than H jP ’. Maximize dim( H ’) ~ Cn 3 / .

Random subspace boogie dim( H jR ) = 2j+1 dim( H jP ) > dim( H ) jR 8 j < n/2 Choose H L at random from H ’. |Y| ~ n/6. dim( H jR ’) ~ 2n/3. dim( H jP ’) ~ 2n/(3 . Start simple: Choose |  i at random from H ’. What to expect? ▪ Nearly same weight in each sector H jR ’ ­ H jP ’: Tr(  H j 1 R ’ ­ H j 1 P ’ ) ' Tr(  H j 2 R ’ ­ H j 2 P ’ ) for all j 1 and j 2. ▪ Reduced states on H jP ’ almost always maximally mixed if D À D . Actually: state

Random subspace boogie |Y| ~ n/6. dim( H jR ’) ~ 2n/3. dim( H jP ’) ~ 2n/(3 . Actually: Choose |  i at random from H ’. Let f(  ) = k E (  ) -  0 k 1. E  f(  ) · 1/  P f(  ) Essentially Gaussian Why?|  i ~  k=1 K g k |e k i, where K = dim H ’ and g k are independent and Gaussian with variance 1/K. ??

Random subspace boogie H L =US 0 ½ H ’ 1)Choose a fine net N of states on the on unit sphere of fixed subspace S 0. 2)P ( Not all states in UN have small f(  ) · | N | P ( One state doesn’t ) 3)True for sufficiently fine N implies true for all states in S. THEOREM: There exists a subspace H L of H ’ with f(  ) ·  for all |  i 2 H L and such that log dim H L = 3 log n + O( log  ). ROUGHLY: 3 log n private qubits can be embedded in a message of n spin ½ particles using a secret reference frame.

A bit of self-criticism  Transmitting m private qubits requires about exp(m/3) spins!  Likewise, the bound on the leaked information isn’t very good. Can go to zero exponentially with m, but not with the number of spins, n.

Conclusions  Showed that the private classical and quantum capacities of a secret SU(2) reference frame are equal  What about other types of shared reference frames?  SU(d): similar argument if d ¸ 2  S n : what about reference orderings?  What about reference frames with finite precision?