Mobile Communication Technology according to IEEE (examples)

Slides:



Advertisements
Similar presentations
Bluetooth.
Advertisements

Bluetooth Architecture Overview Dr. Chatschik Bisdikian IBM Research T
BLUETOOTH TM :A new radio interface providing ubiquitous connectivity Jaap C.Haartsen Ericssion Radio System B.V IEEE.
1 Introduction to Bluetooth v1.1 (Part I) Overview Radio Specification Baseband Specification LMP L2CAP.
1 University of Freiburg Computer Networks and Telematics Prof. Christian Schindelhauer Wireless Sensor Networks 11th Lecture Christian Schindelhauer.
Bluetooth Still Waiting for the Tsunami!. Bluetooth History Ericsson initiative Special Industry Group: (Promoters) Ericsson, IBM, Intel, Nokia, and Toshiba.
Mobile Communications: Wireless LANs Mobile Communications Chapter 7: Wireless LANs ª Parte - Bluetooth.
Doc.: IEEE /046r1 Submission January 2001 Tom Siep, Texas InstrumentsSlide 1 Bluetooth Architecture Presentation Chatschik Bisdikian IBM Research.
By Abdullah M. Dalloul… Abdullah M. Dalloul… Salman Y. Mansour Salman Y. Mansour Supervisor. Supervisor. Dr.
CPET 260 Bluetooth. What is Bluetooth? Not IEEE (Wi-Fi) or HomeRF Originally designed to replace wires Short-range, lower-power wireless technology.
Bluetooth: Technology for Short-Range Wireless Apps Author:Pravin Bhagwat Presented by Chin-Yi Tsai IEEE INTERNET COMPUTING MAY.JUNE 2001.
1 Mini Course Programming Context-aware Mobile Phones Thomas Bodin IT University of Copenhagen.
Bluetooth Introduction The Bluetooth Technology
By: Trevor Parker, Minh-Tri Le. Bluetooth is a wireless technology that is a low-cost, low-power, short-range radio for ad-hoc wireless communication,
BLUETOOTH. Introduction Bluetooth technology discussed here aims at so-called ad- hoc piconets, which are local area networks with a very limited coverage.
Modeling & Simulation of Bluetooth MAC protocol COE543 Term Project Spring 2003 Submitted by: H.M.Asif (ID# )
Respected Sir & dear friends. Presented by Mohd. Sufiyan MCA –Vth Sem Sec-A2 GIMT (Gr. Noida)
Bluetooth & WPAN. 2 Bluetooth/WPAN WPAN (Wireless Personal Area Network) has a smaller area of coverage, say, 2.5 mW transmitter power, distance
Overview of Wireless LANs Use wireless transmission medium Issues of high prices, low data rates, occupational safety concerns, & licensing requirements.
Wireless Personal Area Networks (WPAN) Part-2: IEEE Bluetooth IT351: Mobile & Wireless Computing Objectives: – To introduce Ad Hoc networking and.
Week 6 lecture 1+2 n Bluetooth. 2 of 27 Finish Data Link layer Finish Data Link layer - CRC - CRC - CSMA - CSMA - Hints for Lab 4 - Hints for Lab 4.
WIRELESS LANs BLUETOOTH.
By Santosh Sam Koshy. Agenda Need for Bluetooth Brief History of Bluetooth Introduction to Bluetooth Bluetooth System Specifications Commercial Bluetooth.
Distributed Topology Construction of Bluetooth Personal Area Networks Theodoros Salonidis, Pravin Bhagwat, Leandros Tassiulas and Richard LaMaire.
Bluetooth Techniques ECE 591. Overview  Universal short-range wireless capability  Uses 2.4-GHz band  Available globally for unlicensed users  Devices.
Bluetooth Technology By, Ms.Vicky HSU Rajan Avudaiappan
Introduction to bluetooth. outline Why bluetooth History Bluetooth stack and technology Reference.
King Fahd University of Petroleum & Minerals Electrical Engineering Department EE400 PROJECT Personal Area Networks Instructed by Dr.AlGhadbanPresenters.
Doc.: IEEE /033r2 Submission July 1999 Simon Baatz, University of BonnSlide 1 Integration of Bluetooth into LAN Environments Simon Baatz, Matthias.
An Introduction to BLUETOOTH TECHNOLOGY
Wireless Networks Instructor: Fatima Naseem Computer Engineering Department, University of Engineering and Technology, Taxila.
Architecture of an infrastructure network Distribution System Portal 802.x LAN Access Point LAN BSS LAN BSS 1 Access Point STA.
Bluetooth Techniques Chapter 15. Overview of Bluetooth Initially developed by Swedish mobile phone maker in 1994 to let laptop computers make calls over.
발표자 : 현근수 Bluetooth. Overview wireless protocol short-range communications technology single digital wireless protocol connecting multiple devices mobile.
Team Topic Presentation Team 6 BLUETOOTH What is Bluetooth? Cable Replacement Automatic Connectivity Hidden Computing Few Examples: 1.Automatic Door.
Prof. Dr.-Ing. Jochen Schiller, SS057.1 Bluetooth Idea  Universal radio interface for ad-hoc wireless connectivity  Interconnecting.
Wireless Personal Area Networks (WPAN) Part-2: IEEE Bluetooth IT351: Mobile & Wireless Computing Objectives: – To introduce Ad Hoc networking and.
Lectured By: Vivek Dimri Asst Professor CSE Deptt. SET.
Bluetooth In 1994, the L. M. Ericsson company became interested in connecting its mobile phones to other devices without cables. A SIG (Special Interest.
WLAN.
Bluetooth.
Computer Data Communications. Types of Wireless Networks 2.
Technology By :-. What Is Bluetooth? Designed to be used to connect both mobile devices and peripherals that currently require a wire Short range wireless.
IEEE Wireless LAN Standard
1 Chapter 2: Wireless LANs and PANs  Introduction  Fundamentals of WLANs  IEEE Standard  HIPERLAN Standard  Bluetooth  HomeRF.
Bluetooth Technology. History The name ‘Bluetooth’ was named after 10th century Viking king in Denmark Harald Bluetooth who united and controlled Denmark.
Bluetooth Technology -Prepared By Jasmin Patel -Guided By Jagruti Goswami.
Respected Ma’am & Dear friends
Bluetooth Technology -Prepared By Jasmin Patel -Guided By Jagruti Goswami.
What is Bluetooth? A cable-replacement technology that can be used to connect almost any device to any other device Radio interface enabling electronic.
Presented by Khaled Al Otaishan
SSN College of Engineering
Chapter 15 Wireless LANs.
IT351: Mobile & Wireless Computing
Chapter 4: Wireless LANs and PANs
Introduction to Wireless Networking
Wireless Mesh Networks
A Wireless LAN technologies IEEE
IT351: Mobile & Wireless Computing
Unit – III Wireless PAN’s
Wireless NETWORKS NET 434 Topic No 7 Bluetooth-IEEE802.15
Wireless NETWORKS NET 434 Topic No 7 Bluetooth-IEEE802.15
BLUETOOTH (I) Bluetooth technology aims at so-called ad hoc piconets, which are local area networks with a very limited coverage and without the need for.
Wireless NETWORKS NET 434 Topic No 7 Bluetooth-IEEE802.15
CSE 4215/5431: Mobile Communications Winter 2010
Bluetooth Architecture Overview Dr. Chatschik Bisdikian IBM Research T
BLUETOOTH Personal Area Networking [ PAN ] over Bluetooth
Presentation transcript:

Mobile Communication Technology according to IEEE (examples) Freie Universität Berlin Institut of Computer Science Mobile Communications 2002 WiFi 802.11a 802.11h Local wireless networks WLAN 802.11 802.11i/e/…/n/…/z/aq 802.11b 802.11g ZigBee 802.15.4 802.15.4a/b/c/d/e/f/g Personal wireless nw WPAN 802.15 802.15.5, .6 (WBAN) 802.15.3 802.15.3b/c 802.15.2 802.15.1 Bluetooth Wireless distribution networks WMAN 802.16 (Broadband Wireless Access) WiMAX + Mobility [hist.: 802.20 (Mobile Broadband Wireless Access)] 802.16e (addition to .16 for mobile devices) Prof. Dr.-Ing. Jochen Schiller

Characteristics of wireless LANs Freie Universität Berlin Institut of Computer Science Mobile Communications 2002 Characteristics of wireless LANs Advantages very flexible within the reception area Ad-hoc networks without previous planning possible (almost) no wiring difficulties (e.g. historic buildings, firewalls) more robust against disasters like, e.g., earthquakes, fire - or users pulling a plug... Disadvantages typically very low bandwidth compared to wired networks (1-10 Mbit/s) due to shared medium many proprietary solutions, especially for higher bit-rates, standards take their time (e.g. IEEE 802.11n, ac) products have to follow many national restrictions if working wireless, it takes a vary long time to establish global solutions like, e.g., IMT-2000 Prof. Dr.-Ing. Jochen Schiller

Design goals for wireless LANs Freie Universität Berlin Institut of Computer Science Mobile Communications 2002 Design goals for wireless LANs global, seamless operation low power for battery use no special permissions or licenses needed to use the LAN robust transmission technology simplified spontaneous cooperation at meetings easy to use for everyone, simple management protection of investment in wired networks security (no one should be able to read my data), privacy (no one should be able to collect user profiles), safety (low radiation) transparency concerning applications and higher layer protocols, but also location awareness if necessary … Prof. Dr.-Ing. Jochen Schiller

Comparison: infrastructure vs. ad-hoc networks Freie Universität Berlin Institut of Computer Science Mobile Communications 2002 Comparison: infrastructure vs. ad-hoc networks infrastructure network AP: Access Point AP AP wired network AP ad-hoc network Prof. Dr.-Ing. Jochen Schiller

802.11 - Architecture of an infrastructure network Freie Universität Berlin Institut of Computer Science 802.11 - Architecture of an infrastructure network Mobile Communications 2002 Station (STA) terminal with access mechanisms to the wireless medium and radio contact to the access point Basic Service Set (BSS) group of stations using the same radio frequency Access Point station integrated into the wireless LAN and the distribution system Portal bridge to other (wired) networks Distribution System interconnection network to form one logical network (EES: Extended Service Set) based on several BSS 802.11 LAN 802.x LAN STA1 BSS1 Portal Access Point Distribution System Access Point ESS BSS2 STA2 STA3 802.11 LAN Prof. Dr.-Ing. Jochen Schiller 9

802.11 - Architecture of an ad-hoc network Freie Universität Berlin Institut of Computer Science Mobile Communications 2002 802.11 - Architecture of an ad-hoc network 802.11 LAN Direct communication within a limited range Station (STA): terminal with access mechanisms to the wireless medium Independent Basic Service Set (IBSS): group of stations using the same radio frequency STA1 IBSS1 STA3 STA2 IBSS2 STA5 STA4 802.11 LAN Prof. Dr.-Ing. Jochen Schiller

Freie Universität Berlin Institut of Computer Science Mobile Communications 2002 IEEE standard 802.11 fixed terminal mobile terminal infrastructure network access point application application TCP TCP IP IP LLC LLC LLC 802.11 MAC 802.11 MAC 802.3 MAC 802.3 MAC 802.11 PHY 802.11 PHY 802.3 PHY 802.3 PHY Prof. Dr.-Ing. Jochen Schiller

Freie Universität Berlin Institut of Computer Science Mobile Communications 2002 Bluetooth Basic idea Universal radio interface for ad-hoc wireless connectivity Interconnecting computer and peripherals, handheld devices, PDAs, cell phones – replacement of IrDA Embedded in other devices, goal: 5€/device (already < 1€) Short range (10 m), low power consumption, license-free 2.45 GHz ISM Voice and data transmission, approx. 1 Mbit/s gross data rate One of the first modules (Ericsson). Prof. Dr.-Ing. Jochen Schiller

Freie Universität Berlin Institut of Computer Science Mobile Communications 2002 Bluetooth (was: ) History 1994: Ericsson (Mattison/Haartsen), “MC-link” project Renaming of the project: Bluetooth according to Harald “Blåtand” Gormsen [son of Gorm], King of Denmark in the 10th century 1998: foundation of Bluetooth SIG, www.bluetooth.org 1999: erection of a rune stone at Ercisson/Lund ;-) 2001: first consumer products for mass market, spec. version 1.1 released 2005: 5 million chips/week Special Interest Group Original founding members: Ericsson, Intel, IBM, Nokia, Toshiba Added promoters: 3Com, Agere (was: Lucent), Microsoft, Motorola > 10000 members Common specification and certification of products Prof. Dr.-Ing. Jochen Schiller

Freie Universität Berlin Institut of Computer Science Mobile Communications 2002 Characteristics 2.4 GHz ISM band, 79 (23) RF channels, 1 MHz carrier spacing Channel 0: 2402 MHz … channel 78: 2480 MHz G-FSK modulation, 1-100 mW transmit power FHSS and TDD Frequency hopping with 1600 hops/s Hopping sequence in a pseudo random fashion, determined by a master Time division duplex for send/receive separation Voice link – SCO (Synchronous Connection Oriented) FEC (forward error correction), no retransmission, 64 kbit/s duplex, point-to- point, circuit switched Data link – ACL (Asynchronous ConnectionLess) Asynchronous, fast acknowledge, point-to-multipoint, up to 433.9 kbit/s symmetric or 723.2/57.6 kbit/s asymmetric, packet switched Topology Overlapping piconets (stars) forming a scatternet Prof. Dr.-Ing. Jochen Schiller

Freie Universität Berlin Institut of Computer Science Mobile Communications 2002 Piconet Collection of devices connected in an ad hoc fashion One unit acts as master and the others as slaves for the lifetime of the piconet Master determines hopping pattern, slaves have to synchronize Each piconet has a unique hopping pattern Participation in a piconet = synchronization to hopping sequence Each piconet has one master and up to 7 simultaneous slaves (> 200 could be parked) P S S M P SB S P SB M=Master S=Slave P=Parked SB=Standby Prof. Dr.-Ing. Jochen Schiller

Freie Universität Berlin Institut of Computer Science Mobile Communications 2002 Forming a piconet All devices in a piconet hop together Master gives slaves its clock and device ID Hopping pattern: determined by device ID (48 bit, unique worldwide) Phase in hopping pattern determined by clock Addressing Active Member Address (AMA, 3 bit) Parked Member Address (PMA, 8 bit)   P  S   SB SB S    M P SB     SB SB SB S     SB P SB SB   SB SB Prof. Dr.-Ing. Jochen Schiller

Freie Universität Berlin Institut of Computer Science Mobile Communications 2002 Scatternet Linking of multiple co-located piconets through the sharing of common master or slave devices Devices can be slave in one piconet and master of another Communication between piconets Devices jumping back and forth between the piconets Piconets (each with a capacity of 720 kbit/s) P S S S P P M M SB S M=Master S=Slave P=Parked SB=Standby P SB SB S Prof. Dr.-Ing. Jochen Schiller

Bluetooth protocol stack Freie Universität Berlin Institut of Computer Science Mobile Communications 2002 Bluetooth protocol stack audio apps. NW apps. vCal/vCard telephony apps. mgmnt. apps. TCP/UDP OBEX AT modem commands TCS BIN SDP Control IP BNEP PPP Audio RFCOMM (serial line interface) Logical Link Control and Adaptation Protocol (L2CAP) Host Controller Interface Link Manager Baseband Radio AT: attention sequence OBEX: object exchange TCS BIN: telephony control protocol specification – binary BNEP: Bluetooth network encapsulation protocol SDP: service discovery protocol RFCOMM: radio frequency comm. Prof. Dr.-Ing. Jochen Schiller