Visualization Knowledge (VisKo): Leveraging the Semantic Web to Support VisualizationVisKo Paulo Pinheiro da Silva and Nicholas Del Rio CyberShARE Center.

Slides:



Advertisements
Similar presentations
Dr. Leo Obrst MITRE Information Semantics Information Discovery & Understanding Command & Control Center February 6, 2014February 6, 2014February 6, 2014.
Advertisements

VisKo: Enabling Visualization Generation Over the Web Nicholas Del Rio – UTEP Paulo Pinheiro - PNNL 1
Configuration management
Agenda Definitions Evolution of Programming Languages and Personal Computers The C Language.
ParaView Tutorial Greg Johnson, Karla Vega. Before we begin… Make sure you have ParaView installed so you can follow along in the lab section –
ProActive Task Manager Component for SEGL Parameter Sweeping Natalia Currle-Linde and Wasseim Alzouabi High Performance Computing Center Stuttgart (HLRS),
OASIS Reference Model for Service Oriented Architecture 1.0
1 Introduction to XML. XML eXtensible implies that users define tag content Markup implies it is a coded document Language implies it is a metalanguage.
Surfing the Service Web Sudhir Agarwal, Siegfried Handschuh, and Steffen Staab Presenter: Yihong Ding.
Geography 465 Overview Geoprocessing in ArcGIS. MODELING Geoprocessing as modeling.
Kmi.open.ac.uk Semantic Execution Environments Service Engineering and Execution Barry Norton and Mick Kerrigan.
Visualization Knowledge (VisKo): Leveraging the Semantic Web to Support VisualizationVisKo University of Texas at El Paso Computer Science.
Visualization Knowledge (VisKo): Leveraging the Semantic Web to Support VisualizationVisKo Nicholas Del Rio CyberShARE Center University of Texas at El.
CH07: Writing the Programs Does not teach you how to program, but point out some software engineering practices that you should should keep in mind as.
A Free sample background from © 2001 By Default!Slide 1.NET Overview BY: Pinkesh Desai.
Špindlerův Mlýn, Czech Republic, SOFSEM Semantically-aided Data-aware Service Workflow Composition Ondrej Habala, Marek Paralič,
Aurora: A Conceptual Model for Web-content Adaptation to Support the Universal Accessibility of Web-based Services Anita W. Huang, Neel Sundaresan Presented.
AIRNow-International The future of the United States real-time air quality reporting and forecasting program and GEOSS participation John E. White U.S.
Configurable User Interface Framework for Cross-Disciplinary and Citizen Science Presented by: Peter Fox Authors: Eric Rozell, Han Wang, Patrick West,
Zhonghua Qu and Ovidiu Daescu December 24, 2009 University of Texas at Dallas.
VTK: The Visualization Toolkit Part I: Overview and object models March 28, 2001.
Programming Paradigms
EXCS Sept Knowledge Engineering Meets Software Engineering Hele-Mai Haav Institute of Cybernetics at TUT Software department.
Mihir Daptardar Software Engineering 577b Center for Systems and Software Engineering (CSSE) Viterbi School of Engineering 1.
Introduction to MDA (Model Driven Architecture) CYT.
GCMD/IDN STATUS AND PLANS Stephen Wharton CWIC Meeting February19, 2015.
Personalizing the web for multilingual web sources Anil Goud V Lalith Krishna L Dinesh Kumar D.R.
GMT: The Generic Mapping Tools Paul Wessel, Walter H.F. Smith and the GMT team.
Configuration Management (CM)
Proof Carrying Code Zhiwei Lin. Outline Proof-Carrying Code The Design and Implementation of a Certifying Compiler A Proof – Carrying Code Architecture.
11 CORE Architecture Mauro Bruno, Monica Scannapieco, Carlo Vaccari, Giulia Vaste Antonino Virgillito, Diego Zardetto (Istat)
Verification and Validation in the Context of Domain-Specific Modelling Janne Merilinna.
Eurostat Expression language (EL) in Eurostat SDMX - TWG Luxembourg, 5 Jun 2013 Adam Wroński.
An Introduction to Software Engineering. Communication Systems.
VTK. VTK Online Resources On-line Resources VTK –Manual: –Examples:
An Ontological Framework for Web Service Processes By Claus Pahl and Ronan Barrett.
Performance evaluation of component-based software systems Seminar of Component Engineering course Rofideh hadighi 7 Jan 2010.
2007. Software Engineering Laboratory, School of Computer Science S E Web-Harvest Web-Harvest: Open Source Web Data Extraction tool 이재정 Software Engineering.
Data Structures Using C++ 2E1 Inheritance An “is-a” relationship –Example: “every employee is a person” Allows new class creation from existing classes.
GEON Cyberinfrastructure Workshop Beijing, China, July 21-23, 2006 Workflow-Driven Ontologies for the Geosciences Leonardo Salayandía The University of.
WDO-It! 101 Workshop: Creating an abstraction of a process UTEP’s Trust Laboratory NDR HP MP.
Semantically Processing The Semantic Web Presented by: Kunal Patel Dr. Gopal Gupta UNIVERSITY OF TEXAS AT DALLAS.
FDT Foil no 1 On Methodology from Domain to System Descriptions by Rolv Bræk NTNU Workshop on Philosophy and Applicablitiy of Formal Languages Geneve 15.
NA-MIC, 2008 June Workshop, IHK Akademie Westerham VTK
VTK: The Visualization Toolkit Qaiser Chaudry Georgia Institute of Technology June 28, 2006.
GEON2 and OpenEarth Framework (OEF) Bradley Wallet School of Geology and Geophysics, University of Oklahoma
WDO-It! 102 Workshop: Using an abstraction of a process to capture provenance UTEP’s Trust Laboratory NDR HP MP.
A Logical Framework for Web Service Discovery The Third International Semantic Web Conference Hiroshima, Japan, Michael Kifer 1, Rubén Lara.
Task 1.2 Context: definition and specification. Leuven, 14 oktober 2004 Outline Introduction Work method Context definition Context specification  Overview.
Trustworthy Semantic Webs Dr. Bhavani Thuraisingham The University of Texas at Dallas Lecture #4 Vision for Semantic Web.
Supported in part by the National Science Foundation under Grant No. HRD Any opinions, findings, and conclusions or recommendations expressed.
Visualization Knowledge Query Language (VKQL) Workshop Nicholas Del Rio University of Texas at El Paso Computer Science.
Geoinformatics 2006 University of Texas at El Paso Evaluating BDI Agents to Integrate Resources Over Cyberinfrastructure Leonardo Salayandía The University.
ESIP Semantic Web Products and Services ‘triples’ “tutorial” aka sausage making ESIP SW Cluster, Jan ed.
Visualization with ParaView. Before we begin… Make sure you have ParaView 3.14 installed so you can follow along in the lab section –
NeuroLOG ANR-06-TLOG-024 Software technologies for integration of process and data in medical imaging A transitional.
1 Class exercise II: Use Case Implementation Deborah McGuinness and Peter Fox CSCI Week 8, October 20, 2008.
CHAPTER 4 THE VISUALIZATION PIPELINE. CONTENTS The focus is on presenting the structure of a complete visualization application, both from a conceptual.
ODS – Introduction to Web Services and BPEL Vakgroep Informatietechnologie Web Services & BPEL Design of Distributed Software.
Supported in part by the National Science Foundation under Grant No. HRD Any opinions, findings, and conclusions or recommendations expressed.
A Declarative Domain-Free Approach for Querying and Generating Visualizations Nicholas Del Rio 1 1 Committee Chair:Dr. Paulo Pinheiro 1 Dr. Vladik Kreinovich.
Copyright 2007, Information Builders. Slide 1 iWay Web Services and WebFOCUS Consumption Michael Florkowski Information Builders.
VisKo: Enabling Visualization Generation Over the Web Nicholas Del Rio – UTEP Paulo Pinheiro - PNNL 1
Annotating and Embedding Provenance in Science Data Repositories to Enable Next Generation Science Applications Deborah L. McGuinness.
Web Service Modeling Ontology (WSMO)
Distribution and components
Web Ontology Language for Service (OWL-S)
IS442 Information Systems Engineering
Chapter 2 Database Environment.
Expert Knowledge Based Systems
Presentation transcript:

Visualization Knowledge (VisKo): Leveraging the Semantic Web to Support VisualizationVisKo Paulo Pinheiro da Silva and Nicholas Del Rio CyberShARE Center University of Texas at El Paso

Overview 1.A Visualization Example 2.Toolkits and Visualization Pipelines 3.Visualization Query 4.Automated Generation of Visualization pipelines 5.Ontological Description of Visualization Pipelines 6.Conclusions

Velocity Model Visualization A set of isosurfaces – Visualization derived from a seismic velocity model – Covers a region in southern New Mexico 8 km/s 3 km/s Depth

Visualizing the Velocity Model Visualization generated by custom Java application – relied on Visualization Toolkit (VTK) for rendering – VTK was developed for rendering 3D visualizations – VTK is supported by Sandia, Los Alamos, ARL, and others Writing a custom visualization application: – may rely on third party package to support rendering – may need to perform some transformations on input dataset before rendering

Program For Velocity Visualization vtkImageReader rdr = new vtkImageReader(); rdr.SetFileName(inputDatasetFilePath); rdr.SetDataScalarTypeToUnsignedShort(); rdr.SetDataByteOrderToLittleEndian(); rdr.SetFileDimensionality(3); rdr.SetDataOrigin(0,0,0); rdr.SetDataSpacing(1,1,1); rdr.SetDataExtent(0,230,0,25,0,68); rdr.SetNumberOfScalarComponents(1); rdr.FileLowerLeftOn(); rdr.Update(); vtkContourFilter contours = new vtkContourFilter(); contours.SetInput(rdr.GetOutput()); contours.GenerateValues(35,0.0,9000.0); vtkPolyDataMapper contMapper = new vtkPolyDataMapper(); contMapper.SetInput(contours.GetOutput()); contMapper.SetScalarRange(0.0,9000.0); vtkActor contActor = new vtkActor(); contActor.SetMapper(contMapper); contActor.RotateX(105); vtkRenderer ren1 = new vtkRenderer(); ren1.AddActor(contActor); ren1.AddActor2D(outlineActor); ren1.SetBackground(1,1,1); vtkRenderWindow renWin = new vtkRenderWindow(); renWin.SetOffScreenRendering(1); renWin.AddRenderer(ren1); renWin.SetSize(300,300); renWin.Render(); vtkJPEGWriter img = new vtkJPEGWriter(); img.SetInputConnection(renWin.GetOutputPort()); img.SetFileName(outputDatasetFilePath); img.SetQuality(100);

What Information is Needed? Regarding visualization, users need to know: – What view suits their data (e.g., contours, map, surfaces) – What properties should the view exhibit (e.g., orientation, projection, color, size) Regarding datasets, users may need to know: – The format the data is encoded in (e.g., netCDF, ESRI) to read the datasets – The semantic type of the data (e.g., gravity, velocity) to help with setting parameter arguments

What Information is Needed? Regarding third party rendering software: – Can it generate the required renderings? – Can it ingest my data in the format it resides in? – Does it satisfy my performance requirements? – What language can I use to interface with it? – What dependent packages do I need to install?

Writing the Program Once you have answers for the previous questions, you can begin coding Some portion of the code will transform input datasets into formats that can be rendered – Most renderers are format specific (exception Protovis) The rest of the code will: – Gather suitable arguments for the rendering – Invoking the renderer with the arguments

Overview of the Visualization Program The program that generated the velocity model visualization: – Relies on VTK for rendering – Renders the data as isosurfaces – Ingests data in format binaryFloatArray – transforms binaryFloatArray to VTKImageData – Ingests data of type 3DVelocityModel – Is not ready for parallel execution – Is written in Java

Overview 1.A Visualization Example 2.Toolkits and Visualization Pipelines 3.Visualization Query 4.Automated Generation of Visualization pipelines 5.Ontological Description of Visualization Pipelines 6.Conclusions

Visualization Toolkits VTK is a toolkit that provides functions such as: – Filtering – Gridding/interpolating – Mapping (i.e., transform data into views like isosurfaces) – Rendering the views Functions are referred to as operators – Generic mapping tools (GMT): 60 operators – VTK: hundreds of operators

Visualization Pipeline Model VTK requires that users write pipelines – the output of an operator feeds into the operator next in the pipeline sequence – first operator in pipeline is usually data reader Thus the Java program that visualizes the velocity model can be seen as a pipeline of VTK operators It is up to the users to write these pipelines…

VTK Java Pipeline For Velocity Model vtkImageReader rdr = new vtkImageReader(); rdr.SetFileName(inputDatasetFilePath); rdr.SetDataScalarTypeToUnsignedShort(); rdr.SetDataByteOrderToLittleEndian(); rdr.SetFileDimensionality(3); rdr.SetDataOrigin(0,0,0); rdr.SetDataSpacing(1,1,1); rdr.SetDataExtent(0,230,0,25,0,68); rdr.SetNumberOfScalarComponents(1); rdr.FileLowerLeftOn(); rdr.Update(); vtkContourFilter contours = new vtkContourFilter(); contours.SetInput(rdr.GetOutput()); contours.GenerateValues(35,0.0,9000.0); vtkPolyDataMapper contMapper = new vtkPolyDataMapper(); contMapper.SetInput(contours.GetOutput()); contMapper.SetScalarRange(0.0,9000.0); vtkActor contActor = new vtkActor(); contActor.SetMapper(contMapper); contActor.RotateX(105); vtkRenderer ren1 = new vtkRenderer(); ren1.AddActor(contActor); ren1.AddActor2D(outlineActor); ren1.SetBackground(1,1,1); vtkRenderWindow renWin = new vtkRenderWindow(); renWin.SetOffScreenRendering(1); renWin.AddRenderer(ren1); renWin.SetSize(300,300); renWin.Render(); vtkJPEGWriter img = new vtkJPEGWriter(); img.SetInputConnection(renWin.GetOutputPort()); img.SetFileName(outputDatasetFilePath); img.SetQuality(100);

Pipeline of Visualization Operators vtkImageReader rdr = new vtkImageReader(); rdr.SetFileName(inputDatasetFilePath); rdr.SetDataScalarTypeToUnsignedShort(); rdr.SetDataByteOrderToLittleEndian(); rdr.SetFileDimensionality(3); rdr.SetDataOrigin(0,0,0); rdr.SetDataSpacing(1,1,1); rdr.SetDataExtent(0,230,0,25,0,68); rdr.SetNumberOfScalarComponents(1); rdr.FileLowerLeftOn(); rdr.Update(); vtkContourFilter contours = new vtkContourFilter(); contours.SetInput(rdr.GetOutput()); contours.GenerateValues(35,0.0,9000.0); vtkPolyDataMapper contMapper = new vtkPolyDataMapper(); contMapper.SetInput(contours.GetOutput()); contMapper.SetScalarRange(0.0,9000.0); vtkActor contActor = new vtkActor(); contActor.SetMapper(contMapper); contActor.RotateX(105); vtkRenderer ren1 = new vtkRenderer(); ren1.AddActor(contActor); ren1.AddActor2D(outlineActor); ren1.SetBackground(1,1,1); vtkRenderWindow renWin = new vtkRenderWindow(); renWin.SetOffScreenRendering(1); renWin.AddRenderer(ren1); renWin.SetSize(300,300); renWin.Render(); vtkJPEGWriter img = new vtkJPEGWriter(); img.SetInputConnection(renWin.GetOutputPort()); img.SetFileName(outputDatasetFilePath); img.SetQuality(100); Op 1 Op 2 Op 3 Op 5 Op 6 Op 7 Op 8

Different Types of Operators vtkImageReader rdr = new vtkImageReader(); rdr.SetFileName(inputDatasetFilePath); rdr.SetDataScalarTypeToUnsignedShort(); rdr.SetDataByteOrderToLittleEndian(); rdr.SetFileDimensionality(3); rdr.SetDataOrigin(0,0,0); rdr.SetDataSpacing(1,1,1); rdr.SetDataExtent(0,230,0,25,0,68); rdr.SetNumberOfScalarComponents(1); rdr.FileLowerLeftOn(); rdr.Update(); vtkContourFilter contours = new vtkContourFilter(); contours.SetInput(rdr.GetOutput()); contours.GenerateValues(35,0.0,9000.0); vtkPolyDataMapper contMapper = new vtkPolyDataMapper(); contMapper.SetInput(contours.GetOutput()); contMapper.SetScalarRange(0.0,9000.0); vtkActor contActor = new vtkActor(); contActor.SetMapper(contMapper); contActor.RotateX(105); vtkRenderer ren1 = new vtkRenderer(); ren1.AddActor(contActor); ren1.AddActor2D(outlineActor); ren1.SetBackground(1,1,1); vtkRenderWindow renWin = new vtkRenderWindow(); renWin.SetOffScreenRendering(1); renWin.AddRenderer(ren1); renWin.SetSize(300,300); renWin.Render(); vtkJPEGWriter img = new vtkJPEGWriter(); img.SetInputConnection(renWin.GetOutputPort()); img.SetFileName(outputDatasetFilePath); img.SetQuality(100); Op 1 Op 2 Op 3 Op 5 Op 6 Op 7 Op 8 Data Reader View Mapper Renderer Transformer

Operators are Parameterized vtkImageReader rdr = new vtkImageReader(); rdr.SetFileName(inputDatasetFilePath); rdr.SetDataScalarTypeToUnsignedShort(); rdr.SetDataByteOrderToLittleEndian(); rdr.SetFileDimensionality(3); rdr.SetDataOrigin(0,0,0); rdr.SetDataSpacing(1,1,1); rdr.SetDataExtent(0,230,0,25,0,68); rdr.SetNumberOfScalarComponents(1); rdr.FileLowerLeftOn(); rdr.Update(); vtkContourFilter contours = new vtkContourFilter(); contours.SetInput(rdr.GetOutput()); contours.GenerateValues(35,0.0,9000.0); vtkPolyDataMapper contMapper = new vtkPolyDataMapper(); contMapper.SetInput(contours.GetOutput()); contMapper.SetScalarRange(0.0,9000.0); vtkActor contActor = new vtkActor(); contActor.SetMapper(contMapper); contActor.RotateX(105); vtkRenderer ren1 = new vtkRenderer(); ren1.AddActor(contActor); ren1.AddActor2D(outlineActor); ren1.SetBackground(1,1,1); vtkRenderWindow renWin = new vtkRenderWindow(); renWin.SetOffScreenRendering(1); renWin.AddRenderer(ren1); renWin.SetSize(300,300); renWin.Render(); vtkJPEGWriter img = new vtkJPEGWriter(); img.SetInputConnection(renWin.GetOutputPort()); img.SetFileName(outputDatasetFilePath); img.SetQuality(100); Op 1 Op 2 Op 3 Op 5 Op 6 Op 7 Op 8 P1 P2 P5 P6 P7 P8 P9 P3 P4

What Kind of Skills are Currently required by a user? Knows about different views Knows what toolkits support a particular view Knows what toolkits operate on a particular data Knows how to install a visualization toolkit Knows what language the toolkit is built on Knows what operators need to compose a pipeline Knows suitable arguments for the operators Knows how to develop software

What Kind of Skills are Currently required by a user? Knows about different views Knows what toolkits support a particular view Knows what toolkits operate on a particular data Knows how to install a visualization toolkit Knows what language the toolkit is built on Knows what operators need to compose a pipeline Knows suitable arguments for the operators Knows how to develop software scientist Visualization Expert Engineer

Overview 1.A Visualization Example 2.Toolkits and Visualization Pipelines 3.Visualization Query 4.Automated Generation of Visualization pipelines 5.Ontological Description of Visualization Pipelines 6.Conclusions

Declarative Requests Many user skills needed to visualize data Aside from cognitive aspects of visualization, a large part of the problem is engineering Stems from fact that we generate visualizations imperatively (i.e., write code) Can we provide a means for users to generate visualizations declaratively (i.e., specify what visualization they want without having to code)?

Visualization Query (AND(hasView ?VIS isosurfaces) (hasContent ?VIS (hasFormat ?VIS floatArray) (hasType ?VIS velocityData) (viewedBy ?VIS mozilla-firefox) (hasValue numContours 36)) Desired View URL of Data to visualize Semantic Type of dataset WDO types (UTEP) Format of dataset ParameterArgumentViewer The velocity model visualization was actually a result of a visualization query Requested Visualization

Visualization Queries and SQL Visualization queries mirror SQL queries – query request is specified declaratively – request is then translated into a query plan – query plan computes the result requested by the query Information specified in visualization queries is used to derive pipelines rather than query plans The pipeline in turn generates the visualization requested in the query

Visualization Query Challenges What kind of knowledge is needed to generate pipelines that answer visualization queries? What infrastructure can leverage the knowledge to support the generation and execution of the pipelines?

VisKo Project Claims VisKo supplements user skills with visualization knowledge to compose pipelines VisKo is a framework for: – Encoding user skills into visualization knowledge – Managing visualization knowledge – Automatically generate pipelines from visualization knowledge – Automatically generate visualizations by executing pipelines

Old Way vs VisKo vtkImageReader rdr = new vtkImageReader(); rdr.SetFileName(inputDatasetFilePath); rdr.SetDataScalarTypeToUnsignedShort(); rdr.SetDataByteOrderToLittleEndian(); rdr.SetFileDimensionality(3); rdr.SetDataOrigin(0,0,0); rdr.SetDataSpacing(1,1,1); rdr.SetDataExtent(0,230,0,25,0,68); rdr.SetNumberOfScalarComponents(1); rdr.FileLowerLeftOn(); rdr.Update(); vtkContourFilter contours = new vtkContourFilter(); contours.SetInput(rdr.GetOutput()); contours.GenerateValues(35,0.0,9000.0); vtkPolyDataMapper contMapper = new vtkPolyDataMapper(); contMapper.SetInput(contours.GetOutput()); contMapper.SetScalarRange(0.0,9000.0);

Overview 1.A Visualization Example 2.Toolkits and Visualization Pipelines 3.Visualization Query 4.Automated Generation of Visualization pipelines 5.Ontological Description of Visualization Pipelines 6.Conclusions

A Pipeline Synthesized by VisKo data flow operators

VisKo Pipeline Composition The query tells the system: – the input format – the target view From target view: – Identify operator that generates view (i.e. view mapper) From operator: – identify format it operates on (i.e., target format) Find sequence of operators that transforms the input format (and type) to target format (and type)

Information From Query hasView Binary Float Array hasFormat Dataset Information from Query Isosurfaces view

Knowledge about Toolkit Operators vtk Contour Filter vtk Poly Data input format Output format generatesViewhasView vtk Image Data Binary Float Array hasFormat Dataset Information from Query Knowledge about toolkit operators Isosurfaces view

The Knowledge is Linked vtk Contour Filter vtk Poly Data in format out format generatesViewhasView vtk Image Data Binary Float Array hasFormat Dataset Information from Query Knowledge about toolkit operators Isosurfaces view Both query and operator reference “isosurfaces”

Format Transformation? vtk Contour Filter vtk Poly Data in format out format generatesViewhasView vtk Image Data Binary Float Array hasFormat Dataset Information from Query Knowledge about toolkit operators Isosurfaces view

Required Pipeline vtk Contour Filter vtk Poly Data in format out format generatesViewhasView vtk Image Data Binary Float Array hasFormat Dataset Information from Query Knowledge about toolkit operators Isosurfaces view

Multiple Results Example Visualization Query No view specified! Input format is ESRI Gridded Data is of type Gravity Data

Multiple Results Example Query Results VisKo was able to generate three different pipelines, given the query and visualization knowledge currently loaded

Multiple Visualizations Example Query Results

Multiple Visualizations Example Visualization Query Query Results PDF vs PNG Format View was left unspecified in query, so system visualized data by any means

Composition by Rules Pipeline composition is actually derived through application of rules – rules are applied to statements comprising our visualization knowledge – rules are simple horn clauses Rules are not described in this seminar Before we can apply rules, we need to know what statements comprise our knowledge base

Overview 1.A Visualization Example 2.Toolkits and Visualization Pipelines 3.Visualization Query 4.Automated Generation of Visualization pipelines 5.Ontological Description of Visualization Pipelines 6.Conclusions

VisKo Visualization Language VisKo provides a language to describe operators and how they can be composed into pipelines The language’s expressivity is focused on describing: – Views and view properties – Different operator types – Parameters associated with operators The language is defined by ontologies encoded in Ontology Web Language (OWL)Ontology Web Language (OWL)

VisKo Language Layers The VisKo language encompasses three different ontologies to describe toolkit operators from different perspectives Visko-Service (services, parameters, and types) Visko-Operator (operator function + composition rules) Visko-Views (views and properties) Execution Visualization Spectrum

Encoding Velocity Model View Velocity model is visualized as a set of isosurfaces, so this view is defined as a set of ESIP surfaces We need to describe this resource isosurfaces in terms of the ontology: Isosurfaces isa Surfaces Isosurfaces isa Geometry Isosurfaces isa AtomicView Isosurfaces isa View Isosurfaces description Note: VisKo relies on Resource Document Framework (RDF) for encoding statementsResource Document Framework (RDF)

Encoding Velocity Model Operator A contouring operator generated the isosurfaces The contouring operator – operated on data in format 3DImageData – generated the view isosurfaces – output plot in format PolyData contouringOperator isa Mapper contouringOperator operatesOn 3DImageData contouringOperator transformsTo PolyData contouringOperator mapsTo isosurfaces vtkContourFilter description Note: contouring operator is conceptual and cannot be executed

Encoding Velocity Model Service The contouring operator is implemented by the VTKContourFilter service vtkContourFilter isa Service vtkContourFilter implements contouring vtkContourFilter supportedBy VTK vtkContourFilter hasInput contourSpacing vtkContourFilter hasInput numberOfContours vtkContourFilter hasGrounding wsdlGrounding vtkContourFilter description VisKo-Service OWL-S Executable VisKo service implements operator contouring

Overview 1.A Visualization Example 2.Toolkits and Visualization Pipelines 3.Visualization Query 4.Automated Generation of Visualization pipelines 5.Ontological Description of Visualization Pipelines 6.Conclusions

Conclusions VisKo demonstrates that visualization pipelines can be specified declaratively through the use of visualization queries VisKo is a systematic way of reusing knowledge about visualization toolkits VisKo has been in use for projects in the area of Earth sciences and environmental sciences VisKo has knowledge about the use of GMT, VTK, NCL, ImageJ Together we can create an ESIP Visualization Knowledge Base