GENETIC ALGORITHM A biologically inspired model of intelligence and the principles of biological evolution are applied to find solutions to difficult problems.

Slides:



Advertisements
Similar presentations
Genetic Algorithms.
Advertisements

Genetic Algorithm.
Genetic Algorithms Genetic Programming Ata Kaban School of Computer Science University of Birmingham 2003.
Student : Mateja Saković 3015/2011.  Genetic algorithms are based on evolution and natural selection  Evolution is any change across successive generations.
Tuesday, May 14 Genetic Algorithms Handouts: Lecture Notes Question: when should there be an additional review session?
Biologically Inspired AI (mostly GAs). Some Examples of Biologically Inspired Computation Neural networks Evolutionary computation (e.g., genetic algorithms)
Genetic Algorithms Representation of Candidate Solutions GAs on primarily two types of representations: –Binary-Coded –Real-Coded Binary-Coded GAs must.
Genetic Algorithms Genetic Algorithms (Gas) are inspired by ideas from biological evolution. Like SAs the starting point is a random poor quality solution,
Non-Linear Problems General approach. Non-linear Optimization Many objective functions, tend to be non-linear. Design problems for which the objective.
1 Lecture 8: Genetic Algorithms Contents : Miming nature The steps of the algorithm –Coosing parents –Reproduction –Mutation Deeper in GA –Stochastic Universal.
COMP305. Part II. Genetic Algorithms. Genetic Algorithms.
Introduction to Genetic Algorithms Yonatan Shichel.
Genetic Algorithms GAs are one of the most powerful and applicable search methods available GA originally developed by John Holland (1975) Inspired by.
COMP305. Part II. Genetic Algorithms. Genetic Algorithms.
Genetic Algorithm for Variable Selection
COMP305. Part II. Genetic Algorithms. Genetic Algorithms.
Intro to AI Genetic Algorithm Ruth Bergman Fall 2002.
Genetic Algorithms (GAs) by Jia-Huei Liao Source: Chapter 9, Machine Learning, Tom M. Mitchell, 1997 The Genetic Programming Tutorial Notebook
Genetic Algorithms Nehaya Tayseer 1.Introduction What is a Genetic algorithm? A search technique used in computer science to find approximate solutions.
7/2/2015Intelligent Systems and Soft Computing1 Lecture 9 Evolutionary Computation: Genetic algorithms Introduction, or can evolution be intelligent? Introduction,
Intro to AI Genetic Algorithm Ruth Bergman Fall 2004.
Genetic Algorithms Overview Genetic Algorithms: a gentle introduction –What are GAs –How do they work/ Why? –Critical issues Use in Data Mining –GAs.
Genetic Programming.
Genetic Algorithm.
Evolutionary Intelligence
© Negnevitsky, Pearson Education, CSC 4510 – Machine Learning Dr. Mary-Angela Papalaskari Department of Computing Sciences Villanova University.
Slides are based on Negnevitsky, Pearson Education, Lecture 12 Hybrid intelligent systems: Evolutionary neural networks and fuzzy evolutionary systems.
SOFT COMPUTING (Optimization Techniques using GA) Dr. N.Uma Maheswari Professor/CSE PSNA CET.
Intro. ANN & Fuzzy Systems Lecture 36 GENETIC ALGORITHM (1)
Genetic algorithms Prof Kang Li
CS 484 – Artificial Intelligence1 Announcements Lab 3 due Tuesday, November 6 Homework 6 due Tuesday, November 6 Lab 4 due Thursday, November 8 Current.
Lecture 8: 24/5/1435 Genetic Algorithms Lecturer/ Kawther Abas 363CS – Artificial Intelligence.
Genetic Algorithms Michael J. Watts
What is Genetic Programming? Genetic programming is a model of programming which uses the ideas (and some of the terminology) of biological evolution to.
Genetic algorithms Charles Darwin "A man who dares to waste an hour of life has not discovered the value of life"
An Introduction to Genetic Algorithms Lecture 2 November, 2010 Ivan Garibay
Genetic Algorithms Genetic Algorithms – What are they? And how they are inspired from evolution. Operators and Definitions in Genetic Algorithms paradigm.
1 Machine Learning: Lecture 12 Genetic Algorithms (Based on Chapter 9 of Mitchell, T., Machine Learning, 1997)
Soft Computing A Gentle introduction Richard P. Simpson.
Derivative Free Optimization G.Anuradha. Contents Genetic Algorithm Simulated Annealing Random search method Downhill simplex method.
Kansas State University Department of Computing and Information Sciences CIS 732: Machine Learning and Pattern Recognition Friday, 16 February 2007 William.
© Negnevitsky, Pearson Education, Lecture 9 Evolutionary Computation: Genetic algorithms Introduction, or can evolution be intelligent? Introduction,
 Negnevitsky, Pearson Education, Lecture 9 Evolutionary Computation: Genetic algorithms n Introduction, or can evolution be intelligent? n Simulation.
Why do GAs work? Symbol alphabet : {0, 1, * } * is a wild card symbol that matches both 0 and 1 A schema is a string with fixed and variable symbols 01*1*
1 Genetic Algorithms K.Ganesh Introduction GAs and Simulated Annealing The Biology of Genetics The Logic of Genetic Programmes Demo Summary.
Genetic Algorithms Genetic algorithms provide an approach to learning that is based loosely on simulated evolution. Hypotheses are often described by bit.
ECE 103 Engineering Programming Chapter 52 Generic Algorithm Herbert G. Mayer, PSU CS Status 6/4/2014 Initial content copied verbatim from ECE 103 material.
MAE 552 Heuristic Optimization Instructor: John Eddy Lecture #12 2/20/02 Evolutionary Algorithms.
EE749 I ntroduction to Artificial I ntelligence Genetic Algorithms The Simple GA.
Chapter 9 Genetic Algorithms Evolutionary computation Prototypical GA
GENETIC ALGORITHM Basic Algorithm begin set time t = 0;
D Nagesh Kumar, IIScOptimization Methods: M8L5 1 Advanced Topics in Optimization Evolutionary Algorithms for Optimization and Search.
An Introduction to Genetic Algorithms Lecture 2 November, 2010 Ivan Garibay
Genetic Algorithms. Underlying Concept  Charles Darwin outlined the principle of natural selection.  Natural Selection is the process by which evolution.
Genetic Algorithm Dr. Md. Al-amin Bhuiyan Professor, Dept. of CSE Jahangirnagar University.
Artificial Intelligence By Mr. Ejaz CIIT Sahiwal Evolutionary Computation.
Genetic Algorithms. Solution Search in Problem Space.
Genetic Algorithms And other approaches for similar applications Optimization Techniques.
Genetic Algorithm. Outline Motivation Genetic algorithms An illustrative example Hypothesis space search.
 Presented By: Abdul Aziz Ghazi  Roll No:  Presented to: Sir Harris.
Introduction to Genetic Algorithms
Chapter 14 Genetic Algorithms.
Genetic Algorithms.
Evolutionary Algorithms Jim Whitehead
Introduction to Genetic Algorithm (GA)
GENETIC ALGORITHM A biologically inspired model of intelligence and the principles of biological evolution are applied to find solutions to difficult.
EE368 Soft Computing Genetic Algorithms.
Searching for solutions: Genetic Algorithms
A Gentle introduction Richard P. Simpson
Machine Learning: UNIT-4 CHAPTER-2
Presentation transcript:

GENETIC ALGORITHM A biologically inspired model of intelligence and the principles of biological evolution are applied to find solutions to difficult problems The problems are not solved by reasoning logically about them; rather populations of competing candidate solutions are spawned and then evolved to become better solutions through a process patterned after biological evolution Less worthy candidate solutions tend to die out, while those that show promise of solving a problem survive and reproduce by constructing new solutions out of their components

GENETIC ALGORITHM GA begin with a population of candidate problem solutions Candidate solutions are evaluated according to their ability to solve problem instances: only the fittest survive and combine with each other to produce the next generation of possible solutions Thus increasingly powerful solutions emerge in a Darwinian universe Learning is viewed as a competition among a population of evolving candidate problem solutions This method is heuristic in nature and it was introduced by John Holland in 1975

GENETIC ALGORITHM Basic Algorithm begin set time t = 0; initialise population P(t) = {x 1 t, x 2 t, …, x n t } of solutions; while the termination condition is not met do begin evaluate fitness of each member of P(t); select some members of P(t) for creating offspring; produce offspring by genetic operators; replace some members with the new offspring; set time t = t + 1; end

GENETIC ALGORITHM Representation of Solutions: The Chromosome Gene: A basic unit, which represents one characteristic of the individual. The value of each gene is called an allele Chromosome: A string of genes; it represents an individual i.e. a possible solution of a problem. Each chromosome represents a point in the search space Population: A collection of chromosomes An appropriate chromosome representation is important for the efficiency and complexity of the GA

GENETIC ALGORITHM Representation of Solutions: The Chromosome The classical representation scheme for chromosomes is binary vectors of fixed length In the case of an I-dimensional search space, each chromosome consists of I variables with each variable encoded as a bit string

GENETIC ALGORITHM Example: Cookies Problem Two parameters sugar and flour (in kgs). The range for both is 0 to 9 kgs. Therefore a chromosome will comprise of two genes called sugar and flour 5 1Chromosome # Chromosome # 02

GENETIC ALGORITHM Example: Expression satisfaction Problem F = (  a  c)  (  a  c   e)  (  b  c  d   e)  (a   b  c)  (  e  f) Chromosome: Six binary genesa b c d e fe.g

GENETIC ALGORITHM Representation of Solutions: The Chromosome Chromosomes have either binary or real valued genes In binary coded chromosomes, every gene has two alleles In real coded chromosomes, a gene can be assigned any value from a domain of values

Model Learning Use GA to learn the concept Yes Reaction from the Food Allergy problem’s data GENETIC ALGORITHM

Chromosomes Encoding A potential model of the data can be represented as a chromosome with the genetic representation: Gene # 1Gene # 2Gene # 3Gene # 4 RestaurantMeal Day Cost The alleles of genes are: Restaurant gene: Sam, Lobdell, Sarah, X Meal gene: breakfast, lunch, X Day gene: Friday, Saturday, Sunday, X Cost gene: cheap, expensive, X GENETIC ALGORITHM

Chromosomes Encoding (Hypotheses Representation) Hypotheses are often represented by bit strings (because they can be easily manipulated by genetic operators), but other numerical and symbolic representations are also possible Set of if-then rules: Specific sub-strings are allocated for encoding each rule pre-condition and post-condition Example: Suppose we have an attribute “Outlook” which can take on values: Sunny, Overcast or Rain GENETIC ALGORITHM

Chromosomes Encoding (Hypotheses Representation) We can represent it with 3 bits: 100 would mean the value Sunny, 010 would mean Overcast & 001 would mean Rain 110 would mean Sunny or Overcast 111 would mean that we don’t care about its value The pre-conditions and post-conditions of a rule are encoding by concatenating the individual representation of attributes GENETIC ALGORITHM

Chromosomes Encoding (Hypotheses Representation) Example: If (Outlook = Overcast or Rain) and Wind = strong then PlayTennis = No can be encoded as Another rule If Wind = Strong then PlayTennis = Yes can be encoded as GENETIC ALGORITHM

Chromosomes Encoding (Hypotheses Representation) An hypothesis comprising of both of these rules can be encoded as a chromosome Note that even if an attribute does not appear in a rule, we reserve its place in the chromosome, so that we can have fixed length chromosomes GENETIC ALGORITHM

Variable size chromosomes Sometimes we need a variable size chromosome; e.g. to represent a set of rules Example: Suppose we are representing a set of rules by a chromosome If a1 = T and a2 = F then c = T If a2 = Tthen c = F The chromosome would be where a1 = T is represented by 10, a2 = F by 01, and so on GENETIC ALGORITHM

Evaluation/Fitness Function It is used to determine the fitness of a chromosome Creating a good fitness function is one of the challenging tasks of using GA

GENETIC ALGORITHM Example: Cookies Problem Two parameters sugar and flour (in kgs). The range for both is 0 to 9 kgs. Therefore a chromosome will comprise of two genes called sugar and flour The fitness function for a chromosome is the taste of the resulting cookies; range of 1 to 9

GENETIC ALGORITHM Example: Expression satisfaction Problem F = (  a  c)  (  a  c   e)  (  b  c  d   e)  (a   b  c)  (  e  f) Chromosome: Six binary genesa b c d e fe.g Fitness function: No of clauses having truth value of 1 e.g has fitness 2

Model Learning Use GA to learn the concept Yes Reaction from the Food Allergy problem’s data GENETIC ALGORITHM The fitness function can be the number of training samples correctly classified by a chromosome (model)

GENETIC ALGORITHM Population Size Number of individuals present and competing in an iteration (generation) If the population size is too large, the processing time is high and the GA tends to take longer to converge upon a solution (because less fit members have to be selected to make up the required population) If the population size is too small, the GA is in danger of premature convergence upon a sub-optimal solution (all chromosomes will soon have identical traits). This is primarily because there may not be enough diversity in the population to allow the GA to escape local optima

GENETIC ALGORITHM Selection Operators (Algorithms) They are used to select parents from the current population The selection is primarily based on the fitness. The better the fitness of a chromosome, the greater its chance of being selected to be a parent The rate at which a selection algorithm selects individuals with above average fitness is selective pressure If there is not enough selective pressure, the population will fail to converge upon a solution. If there is too much, the population may not have enough diversity and converge prematurely

GENETIC ALGORITHM Selection Operators: Random Selection Individuals are selected randomly with no reference to fitness at all All the individuals, good or bad, have an equal chance of being selected

GENETIC ALGORITHM Selection Operators: Proportional Selection Chromosomes are selected based on their fitness relative to the fitness of all other chromosomes For this all the fitness are added to form a sum S and each chromosome is assigned a relative fitness (which is its fitness divided by the total fitness S) A process similar to spinning a roulette wheel is adopted to choose a parent; the better a chromosome’s relative fitness, the higher its chances of selection

GENETIC ALGORITHM Selection Operators: Proportional Selection The selection of only the most fittest chromosomes may result in the loss of a correct gene value which may be present in a less fit member (and then the only chance of getting it back is by mutation) One way to overcome this risk is to assign probability of selection to each chromosome based on its fitness In this way even the less fit members have some chance of surviving into the next generation Chromosomes are selected based on their fitness relative to the fitness of all other chromosomes

GENETIC ALGORITHM Selection Operators: Proportional Selection For this all the fitness are added to form a sum S and each chromosome is assigned a relative fitness (which is its fitness divided by the total fitness S) A process similar to spinning a roulette wheel is adopted to choose a parent; the better a chromosome’s relative fitness, the higher its chances of selection

GENETIC ALGORITHM Selection Operators: Proportional Selection The probability of selection of a chromosome “i” may be calculated as p i = fitness i /  j fitness j Example Chromosome FitnessSelection Probability 1 77/ / / /14

GENETIC ALGORITHM Selection Operators: Proportional Selection

GENETIC ALGORITHM Selection Operators: Proportional Selection Advantage Selective pressure varies with the distribution of fitness within a population. If there is a lot of fitness difference between the more fit and less fit chromosomes, then the selective pressure will be higher Disadvantage As the population converges upon a solution, the selective pressure decreases, which may hinder the GA to find better solutions

References Engelbrecht Chapter 8 & 9 GENETIC ALGORITHM