02.12. 14. In Search of Fundamental Symmetries Broken symmetry in nonrelativistic physics and Theory of Polarons A.V.Tulub.

Slides:



Advertisements
Similar presentations
Introduction to Computational Chemistry NSF Computational Nanotechnology and Molecular Engineering Pan-American Advanced Studies Institutes (PASI) Workshop.
Advertisements

2Instituto de Ciencia de Materiales de Madrid,
THE ISING PHASE IN THE J1-J2 MODEL Valeria Lante and Alberto Parola.
Probing Superconductors using Point Contact Andreev Reflection Pratap Raychaudhuri Tata Institute of Fundamental Research Mumbai Collaborators: Gap anisotropy.
Nonlinear Optics Lab. Hanyang Univ. Chapter 8. Semiclassical Radiation Theory 8.1 Introduction Semiclassical theory of light-matter interaction (Ch. 6-7)
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
II. Spontaneous symmetry breaking. II.1 Weinberg’s chair Hamiltonian rotational invariant Why do we see the chair shape? States of different IM are so.
P461 - Semiconductors1 Superconductivity Resistance goes to 0 below a critical temperature T c element T c resistivity (T=300) Ag mOhms/m Cu
No friction. No air resistance. Perfect Spring Two normal modes. Coupled Pendulums Weak spring Time Dependent Two State Problem Copyright – Michael D.
MAGNETIC MONOPOLES Andrey Shmakov Physics 129 Fall 2010 UC Berkeley.
Chaos and interactions in nano-size metallic grains: the competition between superconductivity and ferromagnetism Yoram Alhassid (Yale) Introduction Universal.
Narrow transitions induced by broad band pulses  |g> |f> Loss of spectral resolution.
Physics 452 Quantum mechanics II Winter 2011 Karine Chesnel.
Universality in ultra-cold fermionic atom gases. with S. Diehl, H.Gies, J.Pawlowski S. Diehl, H.Gies, J.Pawlowski.
Semiconductors n D*n If T>0
Free electrons – or simple metals Isolated atom – or good insulator From Isolation to Interaction Rock Salt Sodium Electron (“Bloch”) waves Localised electrons.
Modified Coulomb potential of QED in a strong magnetic field Neda Sadooghi Sharif University of Technology (SUT) and Institute for Theoretical Physics.
Quick and Dirty Introduction to Mott Insulators
Guillermina Ramirez San Juan
9. Interacting Relativistic Field Theories 9.1. Asymptotic States and the Scattering Operator 9.2. Reduction Formulae 9.3. Path Integrals 9.4. Perturbation.
Crystal Lattice Vibrations: Phonons
ATOM-ION COLLISIONS ZBIGNIEW IDZIASZEK Institute for Quantum Information, University of Ulm, 20 February 2008 Institute for Theoretical Physics, University.
Limits of imaging S. Danko Bosanac Brijuni Imaging Primitive Direct inversion Object optical media Identification Advanced Modeling Model mathematical.
Charge transport in DNA molecules: Structural and dynamical disorder 张伟 北京应用物理与计算研究所 2007 年 10 月.
SPIN POLARIZABILITIES AND GYRATIONS OF SPIN-1 PARTICLES IN THE DUFFIN- KEMMER-PETIAU FORMALISM Vakulina E.V., I.G. Petrovsky Bryansk State University,
Advanced methods of molecular dynamics 1.Monte Carlo methods 2.Free energy calculations 3.Ab initio molecular dynamics 4.Quantum molecular dynamics 5.Trajectory.
Ch ; Lecture 26 – Quantum description of absorption.
Correlated States in Optical Lattices Fei Zhou (PITP,UBC) Feb. 1, 2004 At Asian Center, UBC.
History of superconductivity
Calorimeters Chapter 21 Chapter 2 Interactions of Charged Particles - With Focus on Electrons and Positrons -
Gamma ray interaction with matter A) Primary interactions 1) Coherent scattering (Rayleigh scattering) 2) Incoherent scattering (Compton scattering) 3)
Non-Fermi Liquid Behavior in Weak Itinerant Ferromagnet MnSi Nirmal Ghimire April 20, 2010 In Class Presentation Solid State Physics II Instructor: Elbio.
4. Phonons Crystal Vibrations
With S. Mavrodiev (INRNE, BAS, Sofia, Bulgaria D. Vlasenko (NPU, Odessa, Ukraine) M. Deliyergiyev (NPU, Odessa, Ukraine) Kramers Diffusive Mechanism of.
Lecture 22 Spin-orbit coupling. Spin-orbit coupling Spin makes an electron act like a small magnet. An electron orbiting around the nucleus also makes.
Quantum asymmetry between time and space &
The Center for Ultracold Atoms at MIT and Harvard Strongly Correlated Many-Body Systems Theoretical work in the CUA Advisory Committee Visit, May 13-14,
Non-Linear Effects in Strong EM Field Alexander Titov Bogoliubov Lab. of Theoretical Physics, JINR, Dubna International.
Photoinduced nano and micron structures K. Nasu Solid state theory division, Institute of materials structure science, High energy accelerator research.
NTNU 2011 Dimer-superfluid phase in the attractive Extended Bose-Hubbard model with three-body constraint Kwai-Kong Ng Department of Physics Tunghai University,
Arnau Riera, Grup QIC, Dept. ECM, UB 16 de maig de 2009 Intoduction to topological order and topologial quantum computation.
Fundamental principles of particle physics Our description of the fundamental interactions and particles rests on two fundamental structures :
Quantum simulations of high-energy physics models MAX-PLANCK INSTITUT FÜR PHYSIK January 27th, 2015 In collaboration with J. Pachos (Leeds) S. Kühn B.
A POLARON VIEW OF PROTON MOBILITY IN WATER
Raman Effect The Scattering of electromagnetic radiation by matter with a change of frequency.
The bound-electron g factor in light ions
Workshop on Fundamental Physics
Quantum Phase Transition of Light: A Renormalization Group Study
Time Dependent Two State Problem
Qian Niu 牛谦 University of Texas at Austin 北京大学
DECOHERENCE OF POLARON IN DELTA POTENTIAL WELL NANOSTRUCTURES
dark matter Properties stable non-relativistic non-baryonic
Professor Tony Leggett, UIUC
On the collapses and revivals in the Rabi Hamiltonian
Professor Tony Leggett, UIUC
Shanghai Jiao Tong University
Interactions of Electromagnetic Radiation
with Masaki Oshikawa (UBC-Tokyo Institute of Technology)
Strong Coupling of a Spin Ensemble to a Superconducting Resonator
Consider the He atom. The Hamiltonian is
Quantum complexity in condensed matter physics
Chapter 5 - Phonons II: Quantum Mechanics of Lattice Vibrations
Spin-triplet molecule inside carbon nanotube
Theory of Scattering Lecture 4.
Classical Principles of Electromagnetism
Hiroyuki Nojiri, Department of Physics, Okayama University
Addition of Angular Momentum
II. Spontaneous symmetry breaking
wan ahmad tajuddin wan abdullah jabatan fizik universiti malaya
Introduction to topological superconductivity and Majorana fermions
Presentation transcript:

In Search of Fundamental Symmetries Broken symmetry in nonrelativistic physics and Theory of Polarons A.V.Tulub

Broken symmetry in non relativistic physics 1. Electronic structure calculations 2. Molecular structure. 3. Translational invariance. 4. Polaron theory.

Polarons Theory. Pekar broken symmetry solution arise from the wave function structure

Translational invariance 1. S.V. Tyablikov. An Adiabatic Form of perturbation Theory in the Problem of the interaction of a particle with a Quantum Field. JETP.21, P. 377,(1951). « Пекар пытался учесть трансляционное вырождение в задаче о поляроне, однако непоследовательный учет этого вырождения и полуклассическое рассмотрение кристалла требует весьма осторожного обращения с результатами Пекара» 2. Fröhlich, H.Pelzer, S. Zienau. Phil.Mag. 41,221,1951. «Электрон, несмотря на поляризацию, может свободно перемещаться по кристаллу». Боголюбов Н.Н. 3. Translational invariance. The introduction of a classical field. Motion of a superfluid in a narrow canal and Josephson effect. JETP.V. 61,P.1986,1971 (with B.Lukin)

Сarge transfer in DNA. D.Porath et al, Nature, 403, (2000), 635

Holstein Hamiltonian

DNA-molecule in a practice Биочип

Literature 1. S.I. Pekar. Theory of Polarons. JETP.19, P.796, (1949). 2. S.V. Tyablikov. An Adiabatic Form of perturbation Theory in the Problem of the interaction of a particle with a Quantum Field. JETP.21, P. 377,(1951). 3. T.D. Lee, F. Low, D. Pines. The Motion of slow Electrons in a Polar Crystal. Phys.Rev.90,P.297, (1953). 4.R.P. Feynmann. Slow electrons in a Polar Crystals. Phys.Rev.V.97, P.660, (1955). 5. E.P.Gross. Phys.Rev.V.100,1671,(1955). 6. A.V.Tulub. Phonon interactions of electrons in polar crystals.. JETP.V34,P.1641, (1958). 7. A.V.Tulub. On the theory of cyclotron resonance in polar crystals. JETP.V38,№ 2,P.565., (1959). 8. A.V.Tulub. Mean free path of an exiton in polar crystals. JETP.V39,№ 6,P.1859 (1959). 9. A.V.Tulub. Recoil Effect in Quantum Field Theory. Vestnik Leningrad Uni.22,P.104,(1960). 10. A.V.Tulub. Slow electrons in a Polar Crystals.JETP.V41,P.1828, (1961). Present works 1. N. I. Kashirina.Application of Quantum Field Theory Methods to the Development of the translation –invariant Polaron and Bipolaron Theory.Ukr.J.Phys.2014,V.59, №11, P V.D.Lakhno. Large –radius Holstein polaron and the problem of spontaneous symmetry breaking. Progress in Theoretical and Experimental Physics.2014 ( Japan). 3. N. I. Kashirina. V.D.Lakhno, A.V.Tulub. JETP.,141,924,(2012). Kashirina «Weak or intermediate coupling should be realized in real crystal»

1. N. I. Kashirina.Application of Quantum Field Theory Methods to the Development of the translation –invariant Polaron and Bipolaron Theory. Ukr.J.Phys.2014,V.59, P V.D.Lakhno. Large –radius Holstein polaron and the problem of spontaneous symmetry breaking. Progress in Theoretical and Experimental Physics.2014 ( Japan).

Theory of Polarons. (1) Elimination of electron coordinates (2) Were is the mass of a polaron?Self interaction field.

Scattering. The mean free path Resonance structure of the scattering amplitude depends on the value of the coupling constant. Max. value of the coupling constant. The ground state wave function Scattering amplitude

Numerical value. Polaron energy as the function of coupling constant. Try function f of the coupling constant. F = -NV exp(-k 2 /2a 2 ) N. I. Kashirina.Application of Quantum Field Theory Methods to the Development of the translation –invariant Polaron and Bipolaron Theory.Ukr.J.Phys.2014,V.59, №11, P.2071.

Instead of an electron an atom. Symmetry breaking. Difference between left and right polarization in He-Ne laser. 1. N.N. Rozanov, A.V. Tulub// Doklady USSR V. 165,№ 6, P.1280.(1965) 2. N.N. Rozanov, A.V.Tulub // Doklady USSR V. 181,№ 4, P.830(1968) a) quantum field, 2) classical field. Nonlinear effect in a magnetic field A. V. Tulub. // New derivation of the of the formulas of nonlinear susceptibilities. Doklady USSR.V. 212,,P

Superconductivity. 1. G.M. Eliashberg. «Interaction between electrons and lattice vibrations in a superconductor» JETP.V.38,P.966,(1960).Frolich Hamiltonian. 2, Superconductivity arise primarily from a from magnetic coupling, induced attraction interaction. Inverse isotope effect. Journal Phys. Soc. Japan V.78,№ 9,P

Kamihara et al. // Superconductivity in Iron Compounds. (Journ. Amer.Chem. Soc. V.130,P,3296 (2008). Symmetry Braking in a molecular structure. Fe(2) molecule in a free space and in the embedding. Superconductivity arise primarily from a from magnetic coupling, involving the ground as well the excited states. Ground and excited spin states of the molecular cluster Fe(2)Si(18). CI –method.

Fe(2)Si(18). Ferromagnetic coupling. Ground state. Total spin S=4. r(Fe1Si14)=3.027, r(Fe1Si17)=3.029, r(Fe1Si15)=2.578, r(Fe1Si18)=2.578, r(Fe1Si16)=2.591, r(Fe1Si19)=2.591, r(Fe1Si8)=2.906, r(Fe1Si5)=2.908, r(Fe1Si3)=2.951, r(Fe1Si6)=2.952, r(Fe1Si4)=2.934, r(Fe1Si7)=2.933, r(Fe1Fe2)=2.817, r(Fe2Si8)=3.535, r(Fe2Si5)=3.537, r(Fe2Si3)=2.833, r(Fe2Si6)=2.834, r(Fe2Si4)=2.829, r(Fe2Si7)=2.829, r(Fe2Si20)=2.768, r(Fe2Si11)=2.768, r(Fe2Si9)=2.647, r(Fe2Si12)=2.648, r(Fe2Si10)=2.646, r(Fe2Si13)=2.645 q(Fe1)=1.749, q(Fe2)=0.889, q(Si14)=0.306, q(Si17)=0.308, q(Si15)= ‑ 0.432, q(Si18)= ‑ 0.433, q(Si16)= ‑ 0.422, q(Si19)= ‑ 0.420, q(Si8)= ‑ 0.003, q(Si5)= ‑ 0.002, q(Si3)= ‑ 0.284, q(Si6)= ‑ 0.282, q(Si4)= ‑ 0.298, q(Si7)= ‑ 0.300, q(Si20)=0.162, q(Si11)=0.163, q(Si9)= ‑ 0.175, q(Si12)= ‑ 0.176, q(Si10)= ‑ 0.175, q(Si13)= ‑ 0.174

Модель осциллятора пары Watson - Crick

Сarge transfer in DNA. D.Porath et al, Nature, 403, (2000), 635

ATP molecule in interaction with Mg[(H(2)O](6) cluster Grignard-type problem

Tubulin

Тубулиновые микротрубки

Crossing of the different singlet and triplet PES in the case Mg +ATP interaction. Coherence.

Grignard reaction. Singlet and triplet crossing.

Благодарю за внимание Acknowledgements