Nuclear Incompressibility and Compact Stars Fridolin Weber, San Diego State University.

Slides:



Advertisements
Similar presentations
Exotic bulk viscosity and its influence on neutron star r-modes Debades Bandyopadhyay Saha Institute of Nuclear Physics, Kolkata, India Collaborator: Debarati.
Advertisements

Envelopes and thermal radiation of neutron stars with strong magnetic fields Alexander Y. Potekhin 1 in collaboration with D.G.Yakovlev, 1 A.D.Kaminker,
Questions and Probems. Matter inside protoneutron stars Hydrostatic equilibrium in the protoneutron star: Rough estimate of the central pressure is: Note.
Neutron Stars. Gradual compression of a stellar iron core  trans. [g cm -3 ] CompositionDegen. pressure Remarks Iron nuclei; nonrel. free e - nonrel.
Hyperon Suppression in Hadron- Quark Mixed Phase T. Maruyama (JAEA), S. Chiba (JAEA), H.-J. Schhulze (INFN-Catania), T. Tatsumi (Kyoto U.) 1 Property of.
Ilona Bednarek Ustroń, 2009 Hyperon Star Model.
Ch. C. Moustakidis Department of Theoretical Physics, Aristotle University of Thessaloniki, Greece Nuclear Symmetry Energy Effects on the r-mode Instabilities.
Compact neutron stars Theory & Observations Hovik Grigorian Yerevan State University Summer School Dubna – 2012.
Quark Stars Kyle Dolan Astronomy December 2007 NASA/Dane Berry.
Accretion in Binaries Two paths for accretion –Roche-lobe overflow –Wind-fed accretion Classes of X-ray binaries –Low-mass (BH and NS) –High-mass (BH and.
Pulsars Basic Properties. Supernova Explosion => Neutron Stars part of angular momentum carried away by shell field lines frozen into solar plasma (surface.
Neutron Stars and Black Holes
Neutron Stars Chandrasekhar limit on white dwarf mass Supernova explosions –Formation of elements (R, S process) –Neutron stars –Pulsars Formation of X-Ray.
ASTR 113 – 003 Spring 2006 Lecture 07 March 8, 2006 Review (Ch4-5): the Foundation Galaxy (Ch 25-27) Cosmology (Ch28-39) Introduction To Modern Astronomy.
Internal structure of Neutron Stars. Artistic view.
The role of neutrinos in the evolution and dynamics of neutron stars José A. Pons University of Alicante (SPAIN)  Transparent and opaque regimes.  NS.
White Dwarfs and Neutron Stars White dwarfs –Degenerate gases –Mass versus radius relation Neutron stars –Mass versus radius relation –Pulsars, magnetars,
Low Mass X-ray Binaries and Accreting Millisecond Pulsars A. Patruno R. Wijnands R. Wijnands M. van der Klis M. van der Klis P. Casella D. Altamirano D.
Debades Bandyopadhyay Saha Institute of Nuclear Physics Kolkata, India With Debarati Chatterjee (SINP) Bulk viscosity and r-modes of neutron stars.
Xia Zhou & Xiao-ping Zheng The deconfinement phase transition in the interior of neutron stars Huazhong Normal University May 21, 2009 CSQCD Ⅱ.
November 2, 2006LIGO / pulsar workshop1 How LIGO searches are affected by theory & astronomical observations Ben Owen.
Neutron Stars and Black Holes PHYS390: Astrophysics Professor Lee Carkner Lecture 18.
Thermal Evolution of Rotating neutron Stars and Signal of Quark Deconfinement Henan University, Kaifeng, China Miao Kang.
Possible neutron star compositions Spin evolution of neutron stars.
The structure of neutron star by using the quark-meson coupling model Heavy Ion Meeting ( ) C. Y. Ryu Soongsil University, Korea.
Calculating the moment of inertia of neutron stars Jacobus Diener Stellenbosch University, RSA Dr Alan Dzhioev and Prof Victor Voronov Bogoliubov Laboratory.
Quadrupole moments of neutron stars and strange stars Martin Urbanec, John C. Miller, Zdenek Stuchlík Institute of Physics, Silesian University in Opava,
Internal structure of Neutron Stars. Artistic view.
1 On the importance of nucleation for the formation of quark cores inside compact stars Bruno Werneck Mintz* Eduardo Souza Fraga Universidade Federal do.
Close-by young isolated NSs: A new test for cooling curves Sergei Popov (Sternberg Astronomical Institute) Co-authors: H.Grigorian, R. Turolla, D. Blaschke.
Neutron stars swollen under strong magnetic fields Chung-Yeol Ryu Soongsil University, Seoul, Korea Vela pulsar.
Physics 681: Solar Physics and Instrumentation – Lecture 19 Carsten Denker NJIT Physics Department Center for Solar–Terrestrial Research.
QUARK MATTER SYMMETRY ENERGY AND QUARK STARS Peng-cheng Chu ( 初鹏程 ) (INPAC and Department of Physics, Shanghai Jiao Tong University.
Gravitational waves and neutrino emission from the merger of binary neutron stars Kenta Kiuchi Collaboration with Y. Sekiguchi, K. Kyutoku, M. Shibata.
Cooling of CasA With&without Quark Matter CSQCD-IV- Prepow my ‘cool’ co-authors: D. Blaschke, D. Voskresensky Hovik Grigorian : Yerevan State University,
Internal structure of Neutron Stars. Artistic view.
Gravitational waves from neutron star instabilities: What do we actually know? Nils Andersson Department of Mathematics University of Southampton IAP Paris.
Equation Of State and back bending phenomenon in rotating neutron stars 1 st Astro-PF Workshop – CAMK, 14 October 2004 Compact Stars: structure, dynamics,
Plasma universe Fluctuations in the primordial plasma are observed in the cosmic microwave background ESA Planck satellite to be launched in 2007 Data.
THIN ACCRETION DISCS AROUND NEUTRON AND QUARK STARS T. Harko K. S. Cheng Z. Kovacs DEPARTMENT OF PHYSICS, THE UNIVERSITY OF HONG KONG, POK FU LAM ROAD,
THERMAL EVOLUION OF NEUTRON STARS: Theory and observations D.G. Yakovlev Ioffe Physical Technical Institute, St.-Petersburg, Russia Catania, October 2012,
COOLING OF NEUTRON STARS D.G. Yakovlev Ioffe Physical Technical Institute, St.-Petersburg, Russia Ladek Zdroj, February 2008, 1. Formulation of the Cooling.
Ferromagnetism in nuclear matter (and how it relates to neutron stars) Jacobus Diener (PhD student) Supervisors: Prof FG Scholtz and Prof HB Geyer Department.
COOLING NEUTRON STARS: THEORY AND OBSERVATIONS D.G. Yakovlev Ioffe Physical Technical Institute, St.-Petersburg, Russia Hirschegg – January – 2009 Introduction.
Probing Neutron Star EOS in Gravitational Waves & Gamma-ray Bursts Kim Young-Min, Cho Hee-Suk Lee Chang.-Hwan, Park Hong-Jo (Pusan National University)
Neutron Star Binaries and Related Astrophysical Issues Chang-Hwan 1.
Magnetic fields generation in the core of pulsars Luca Bonanno Bordeaux, 15/11/2010 Goethe Universität – Frankfurt am Main.
Compact Stars as Sources of Gravitational Waves Y. Kojima (Hiroshima Univ.) 小嶌康史 ( 広島大学理学研究科 ) 第 3 回 TAMA シンポジュウム(柏) 2003 年 2 月 6 - 7 日.
Hadron-Quark phase transition in high-mass neutron stars Gustavo Contrera (IFLP-CONICET & FCAGLP, La Plata, Argentina) Milva Orsaria (FCAGLP, CONICET,
Neutron star core-quakes caused by a transition to the mixed-phase EOS mixed-phase linear response theory stellar models M. Bejger, collaboration with.
COOLING OF NEUTRON STARS D.G. Yakovlev Ioffe Physical Technical Institute, St.-Petersburg, Russia Ladek Zdroj, February 2008, 1. Formulation of the Cooling.
In this lecture we look at: 1) Neutron stars in x-ray binaries 2) Mass-radius relationship 3) Strange star candidates 4) Quark deconfinement at T=0 5)
Asymmetric Neutrino Reaction in Magnetized Proto-Neutron Stars in Fully Relativistic Approach Tomoyuki Maruyama BRS, Nihon Univ. (Japan) Tomoyuki Maruyama.
Death of Stars II Physics 113 Goderya Chapter(s): 14
Evolutionary Sequences For Low- And-Intermediate-Mass X-Ray Binaries Ph. Podsiadlowski S. Rappaport E. D. Pfahl.
带强磁场奇异星的 中微子发射率 刘学文 指导老师:郑小平 华中师范大学物理科学与技术学院. Pulsar In 1967 at Cambridge University, Jocelyn Bell observed a strange radio pulse that had a regular period.
Neutron Star Normal Modes Neutron Star Normal Modes LSC Meeting, Baton Rouge, March 2004 LIGO-G Z B.S. Sathyaprakash and Bernard Schutz Cardiff.
Sleuthing the Isolated Compact Stars Jeremy Drake Smithsonian Astrophysical Observatory Compact Stars: Quest for New States of Dense Matter.
Mass & Radius of Compact Objects Fastest pulsar and its stellar EOS CHENGMIN ZHANG National Astronomical Observatories Chinese Academy of Sciences, Beijing.
Some theoretical aspects of Magnetars Monika Sinha Indian Institute of Technology Jodhpur.
K.M.Shahabasyan, M. K. Shahabasyan,D.M.Sedrakyan
Nucleosynthesis in decompressed Neutron stars crust matter Sarmistha Banik Collaborators: Smruti Smita Lenka & B. Hareesh Gautham BITS-PILANI, Hyderabad.
Gamma-Ray Emission from Pulsars
Neutron Stars, Supernova & Phases of Dense Quark Matter Seeking observable signatures for dense quark matter in astrophysics Sanjay Reddy Theoretical Division,
To test AXP/SGR models with eXTP NSs & magnetarshttp:// R. X. Xu Renxin Xu ( 徐仁新 ) School of Physics, Peking University (
When a star dies…. Introduction What are compact objects? –White dwarf, neutron stars & black holes Why study? –Because it’s fun! –Test of physics in.
Impact of the symmetry energy on the neutron star oscillation Department of Physics, South China Univ. of Tech. (文德华 华南理工大学物理系) collaborators Bao-An Li,
High Energy Observational Astrophysics. 1 Processes that emit X-rays and Gamma rays.
Relativistic EOS for Supernova Simulations
MERGING REVEALS Neutron Star INNARDS
Presentation transcript:

Nuclear Incompressibility and Compact Stars Fridolin Weber, San Diego State University

? “Neutron” Star Outer crust Inner crust Core H/He plasma M~1.4 M sun, R~10 km

Neutrons Classical Neutron Star Composition ~ 1930's ~ 1930's

Neutron Star Composition in 2005

Influence of Incompressibility & Symmetry Energy on NS Properties ● Core composition (hyperons, bosons, quarks; superfluid protons, superconducting quarks) ● Neutron star masses (1.25 M sun, 1.7 M sun ) ● Fast rotation (Kepler, GW instabilities) ● Do sub-millisecond pulsars exist? ● Superconducting quark matter (CFL, 2SC, LOFF,...) ● r-modes ● Cooling (mean free path, heat capacity, conductivity, neutrino emissivity) ● Pulsar kicks ● Magnetic fields ● Gamma ray bursts ● Signals of phase transitions ● Evolutionary transitions (neutron star to strange star transition) ● Surface gravity (mass accretion, frame dragging, re d-shifted/blue-shifted photons) ● Nuclear crust thickness (isolated neutron stars, LMXBs, pulsar glitches) ● Gravity waves from neutron stars (e.g., r-modes, f-modes,...) ● Stellar cooling ● Proto-neutron stars ● X-ray burster ●....

Selected Neutron Star Masses J : 1.3 M sun B : 1.6±0.2 M sun J : 1.7±0.6 M sun Vela X-1: 2.27± 0.17; 1.88±0.13 J : companion mass 1.22 to 1.38 M sun Vela X-1: 1.88±0.13 M sun, 2.27±0.17 M sun +0.3 J : 2.1 M sun +0.9 Cyg X-2: 1.44±0.06 M sun, R=9.0± kpc 0.97±0.04 M sun, R=7.7±0.4 9 kpc J : 1.249±0.001 M sun D. Nice et al. (2004 ) 95% cfl 68% cfl

Models for the Nuclear Equation of State

Mass-Radius Relationship of Neutron and Quark Stars “Neutron” stars R > 10 km Quark stars R < 10 km ~ ~

● Metric: ds 2 = − e −2ν  dt 2 + e 2(α+β  ) r 2 sin 2 ϑ  (dφ – N φ dt) 2 + e 2(α–β) (dr 2 + r 2 d ϑ 2 ) ● Christoffel symbols: Г σ μν = g σλ (∂ ν g μλ + ∂ μ g νλ – ∂ λ g μν ) / 2 ● Riemann tensor: R τ μνσ = ∂ ν Г τ μσ – ∂ σ Г τ μν + Г κ μσ Г τ κν – Γ κ μν Γ τ κσ ● Ricci tensor: R μν = R τ μσν g σ τ ● Scalar curvature: R = R μν g μν Kepler frequency: Ω K = r –1 e ν–α–β U K + N φ at r=R eq Einstein's Field Equations for Rotating Compact Objects I => Stellar properties: M, R p, R eq, I, z, Ω K, ω

Dependence of Particle Thresholds on Spin Frequency of a Neutron Star F. Weber, Prog. Nucl. Part. Phys. 54 (2005) % change!!

Rotation at Mass Shedding Frequency P K = 2π/Ω K = 2π√(R 3 /M) Parkes radio telescope strange quark stars strange quark stars “neutron” stars “neutron” stars CFL 1.6 ms

Frame Dragging of the LIFs

Quark-Hadron Composition (Relativistic Hartree) Hyperons Nucleons only

Quark-Hadron Composition Relativistic Hartree Relativistic Hartree-Fock

Stellar Composition (M~1.4 M sun ) p,n liquid p,n liquid “Traditional” NS Quark-hybrid star

Density Contours

Quark-Hadron Composition in Rotating “Neutron” Stars Equatorial direction Polar direction 3030 10  0

Backbending

(~5 km) (~3 km) Glendenning, Pei, Weber, PRL 79 (1997) 1603 ν=220 Hz ν=65 Hz Weber, J. Phys. G: Nucl. Part. Phys. 25 (1999) R195 Weber, Prog. Part. Nucl. Phys. 54 (2005) 193

Open issue: stability? 5.5 km 1.9 km 14.3 km Differentially Rotating Stellar Objects Ω M=1.4 M sun ν eq =290 Hz ν c =140 ν eq

Pulsar B (1.25 M sun ) in J P. Podsiadlowski et al., MNRAS (in press)

K=240 MeV m*/m=0.78 a sym =32 MeV My analysis: variational calculation (WUU), RMF, and RBHF (Brockmann B) RMF, and RBHF (Brockmann B) lead to M by = to M sun lead to M by = to M sun provided provided at nuclear matter saturation density.

Summary

Spin Frequency Evolution of Neutron Stars in LMXB's

Frequency Distribution of X-Ray Neutron Stars Glendenning & Weber, ApJ 559 (2001) L119

Histogram of Neutron Stars Spin Frequencies Histogram of Neutron Stars Spin Frequencies (from L. Bildsten, astro-ph/ ) Solid line is for MSPs in 47 Tuc Dashed line is for 4U U U KS Aql X-1 MXB U MXB SAX J U Sax J XTE J XTE J Population decline to high frequen- cies in 47 Tuc

Quark-Hadron Thresholds

Differentially Rotating Stars

Sequences of constant baryon number

Mass versus Radius Relationships

accreting neutron star

Spin Evolution of Accreting Neutron Stars

Models for the Nuclear EoS UV 14 +UVII UV 14 +TNI UV14+UVII UV14+TNI

Relativistic Nuclear Field-Theory L = Ψ B (iγ μ ∂ μ – m B ) Ψ B + Mesons (σ,ω,π,ρ,η,δ, ϕ ) + Interactions Baryons: (iγ μ ∂ μ – m B ) Ψ B = g σB σ ψ B + g ωB γ μ ω μ ψ B +... Mesons: (∂ μ ∂ μ + m σ 2 ) σ = Σ B g σB ψ B ψ B T=V + ∫ V [g g] T ∑=∫ T g g = g 0 + g 0 ∑ g => P(ρ) T=V + ∫ V [g g] T ∑=∫ T g g = g 0 + g 0 ∑ g => P(ρ) σ, ω, π, ρ,... B1B1 B' 1 B' 2 B2B2 Γ1Γ1 Γ2Γ2 T matrix

RXJ ● Discovered serendipitously in study of pre-main-sequence stars in R CrA star forming region Brightest INS candidate in X-rays HST parallax => pc (Walter & Lattimer 2002; Kaplan et al 2002; 175 pc - Kaplan 2003!) Proper motion points to Upper Scorpius OB association => age~10 6 yr

“Neutron” Star Cooling 2SC? CFL?

Possible Quark-Hadron Composition

Braking of Pulsars n = (Ω d 2 Ω/dt 2 )/(dΩ/dt) 2 = 3 – (I'' Ω 2 +3I' Ω)/(I' Ω+2I) n = (Ω d 2 Ω/dt 2 )/(dΩ/dt) 2 = 3 – (I'' Ω 2 +3I' Ω)/(I' Ω+2I) Isolated pulsars spin down because of energy and angular momentum loss due to radiative processes Crab/VLT/ESO (I'≡dI/dΩ) d dE/dt = d/dt (½ I Ω 2 ) = - C Ω n+1 Braking index: Ω

Possible Astrophysical Signal of Quark Deconfinement

Epoch over which “n” is anomalous ~10 8 years About 10% of the existing millisecond pulsar population could signal quark deconfinement in their centers!

Neutron Star Temperatures Dany Page, Seoul, South Korea, 2003(

RBHF Based on Brockmann-Machleidt OBE Potential B Based on Brockmann-Machleidt OBE Potential B Nuclear matter Nuclear matter Neutron matter Neutron matter

Rotating Neutron Star (Pulsar) Facts about pulsars: ● M~1-2 M sun ● R~10 km ● P>1.58 ms (630 Hz) ● B~10 12 G ● # ~ (1% M Galaxy ) Facts about pulsars: ● M~1-2 M sun ● R~10 km ● P>1.58 ms (630 Hz) ● B~10 12 G ● # ~ (1% M Galaxy ) } ρ~10 15 g/cm 3 B Ω

Nuclear Incompressibility and Compact Stars Fridolin Weber Department of Physics San Diego State University JINA Workshop on Nuclear Incompressibility and the Nuclear Equation of State, July 14-15, 2005

Nuclear matter Quark matter p n Unconfined quarks Quarks confined inside neutrons and protons