Electricité atmosphérique et Production d’oxydes d’azote par les éclairs: Etat des lieux et perspectives Christelle Barthe 1 et Jean-Pierre Pinty Laboratoire.

Slides:



Advertisements
Similar presentations
Institut für Physik der Atmosphäre Institut für Physik der Atmosphäre Modelisation a meso-echelle au IPA-DLR : Des eclairs au trafic aérien Mesoscale Modeling.
Advertisements

WMO International Cloud Modeling Workshop, July 2004 A two-moment microphysical scheme for mesoscale and microscale cloud resolving models Axel Seifert.
FOREST FIRE IMPACT ON AIR QUALITY THE LANCON-DE-PROVENCE 2005 CASE S. Strada, C. Mari Laboratoire d'Aérologie, Université de Toulouse, CNRS, Toulouse,
Meso-NH model 40 users laboratories
Geophysical Fluid Dynamics Laboratory Review June 30 - July 2, 2009 Geophysical Fluid Dynamics Laboratory Review June 30 - July 2, 2009.
Effects of Urban-Influenced Thunderstorms on Atmospheric Chemistry Kenneth E. Pickering Department of Meteorology University of Maryland HEAT Planning.
Lightning and Storm Electricity Research Don MacGorman February 25–27, 2015 National Weather Center Norman, Oklahoma.
Length Scale analysis of the transition from shallow to deep convection João Paulo A. Martins (1) Pedro M. A. Miranda (1) Pedro M. M. Soares (1) João Teixeira.
Deep Convecton and Lightning Ken Pickering – NASA/GSFC Chris Cantrell – NCAR Tropospheric Chemistry Future Activities Meeting March 8, 2007 Deep Convection.
On the relationship of in-cloud convective turbulence and total lightning Wiebke Deierling, John Williams, Sarah Al-Momar, Bob Sharman, Matthias Steiner.
29th EWGLAM meeting, Dubrovnik, October 2007 ALARO Physics developments Neva Pristov LACE Working group for physics.
In this work we present results of cloud electrification obtained with the RAMS model that includes the process of charge separation between ice particles.
Earth&Atmospheric Sciences, Georgia Tech Modeling the impacts of convective transport and lightning NOx production over North America: Dependence on cumulus.
Water Budget and Precipitation Efficiency of Typhoons Morakot (2009) Ming-Jen Yang 1, Hsiao-Ling Huang 1, and Chung-Hsiung Sui 2 1 National Central University,
Thunderstorms and Tornadoes Last Lecture: We looked at severe weather events in the lower latitudes Principal weather event is the formation and movement.
WMO workshop, Hamburg, July, 2004 Some aspects of the STERAO case study simulated by Méso-NH by Jean-Pierre PINTY, Céline MARI Christelle BARTHE and Jean-Pierre.
DYMECS: Dynamical and Microphysical Evolution of Convective Storms (NERC Standard Grant) University of Reading: Robin Hogan, Bob Plant, Thorwald Stein,
High resolution simulations of microphysics and electrification in a hurricane-like vortex and a TOGA COARE oceanic squall line Alexandre Fierro School.
The effect of pyro-convective fires on the global troposphere: comparison of TOMCAT modelled fields with observations from ICARTT Sarah Monks Outline:
CCN effects on numerically simulated mixed-phase convective storms with Klaus D. Beheng, University Karlsruhe, Germany Alexander Khain, Hebrew University.
CAPE AND LIGHTNING How is distribution of CAPE more diffused than distribution of lightning? Positive corelation between convective cloud layer, columnar.
Status of the COSMO-Model Package Ulrich Schättler.
Deep Convective Clouds and Chemistry (DC3) Field Experiment Principal Investigators: Mary Barth (NCAR), Bill Brune (PSU), Chris Cantrell(NCAR), Steve Rutledge.
Edward Mansell National Severe Storms Laboratory Donald MacGorman and Conrad Ziegler National Severe Storms Laboratory, Norman, OK Funding sources in the.
Toulouse IHOP meeting 15 June 2004 Water vapour variability within the growing convective boundary layer of 14 June 2002 with large eddy simulations and.
Tropical Severe Local Storms Nicole Hartford. How do thunderstorms form?  Thunderstorms result from moist warm air that rises due to being less dense.
Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss WG 3: Overview status report COSMO General Meeting, 19.
Three real case simulations by Meso-NH validated against satellite observations J.-P. Chaboureau and J.-P. Pinty Laboratoire d’Aérologie, Toulouse 1.Elbe.
WMO Cloud Modeling workshop, Warsaw, July 2012 WMO Cloud Modeling workshop, Warsaw, July 2012 Idealized Oklahoma squall Line 20 june 2007, reflectivity.
Preliminary LES simulations with Méso-NH to investigate water vapor variability during IHOP_2002 F. Couvreux F. Guichard, V.
Sensitivity of Squall-Line Rear Inflow to Ice Microphysics and Environmental Humidity Ming-Jen Yang and Robert A. House Jr. Mon. Wea. Rev., 123,
Toward a new parameterization of nitrogen oxides produced by lightning flashes in the WRF-AqChem model Christelle Barthe NCAR/ACD Previously at Laboratoire.
Cyclones and Anticyclones September 19, Name that cloud.
AMMA WP4.1.3 meeting at Service d'Aéronomie, Jussieu, Paris 2-3 July D modeling with Méso-NH over West Africa Marielle SAUNOIS, Céline MARI, Valérie.
The Deep Convective Clouds and Chemistry (DC3) Field Experiment Mary C. Barth (NCAR), W. H. Brune (PSU), C. A. Cantrell (U. Colorado), S. A. Rutledge (CSU),
Contrasting potential vorticity structures in two summer extratropical cyclones Oscar Martínez-Alvarado NCAS-Atmospheric Physics Sue Gray John Methven.
Influence of Lightning-produced NOx on upper tropospheric ozone Using TES/O3&CO, OMI/NO2&HCHO in CMAQ modeling study M. J. Newchurch 1, A. P. Biazar.
Modeling Deep Convection and Chemistry and their Roles in the Tropical Tropopause Layer Workshop in Victoria, BC June 2006 SPARC, GEWEX, IGAC Barth, McFarlane.
Chien Wang Massachusetts Institute of Technology A Close Look at the Aerosol-Cloud Interaction in Tropical Deep Convection.
Case 5: Tracer Transport in Deep Convection STERAO-1996 From Dye et al. (2000)
Lecture 18 Lake Effect Storms. Homework Due Friday, December 12, 2014 TYU Ch 13: 2,4,,6, 7,18 ; TYPSS 3 TYU Ch 16: 1, 2, 3, 7, 11 ; TYPSS 2 Extra Credit,
Convective Transport of Carbon Monoxide: An intercomparison of remote sensing observations and cloud-modeling simulations 1. Introduction The pollution.
Relationships between total lightning activity, microphysics, and kinematics during the 24 September 2012 HyMeX MCS system J.-F. Ribaud, O. Bousquet and.
Impact of Cloud Microphysics on the Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison of One- and Two-Moment Schemes.
Deep Convective Clouds and Chemistry (DC3) Field Program.
and NM Tech team & many HyMeX participants
Seamless turbulence parametrization across model resolutions
Water Budget of Typhoon Nari(2001)
Inna M. Gubenko and Konstantin G
Short Term forecasts along the GCSS Pacific Cross-section: Evaluating new Parameterizations in the Community Atmospheric Model Cécile Hannay, Dave Williamson,
Topographic Effects on Typhoon Toraji (2001)
Xu, H., and X. Li, 2017 J. Geophys. Res. Atmos., 122, 6004–6024
Lightning Potential Index (J/Kg) (Yair et al.2010,JGR)
Lightning Potential Index (J/Kg) (Yair et al.2010,JGR)
Lightning Potential Index (J/Kg) (Yair et al.2010,JGR)
Lightning Potential Index (J/Kg) (Yair et al.2010,JGR)
Lightning Potential Index (J/Kg) (Yair et al.2010,JGR)
Lightning Potential Index (J/Kg) (Yair et al.2010,JGR)
Lightning Potential Index (J/Kg) (Yair et al.2010,JGR)
Lightning Potential Index (J/Kg) (Yair et al.2010,JGR)
Lightning Potential Index (J/Kg) (Yair et al.2010,JGR)
Lightning Potential Index (J/Kg) (Yair et al.2010,JGR)
Orographic Influences on Rainfall Associated with Tropical Cyclone
The Flux Model of Orographic Rain
Lightning Potential Index (J/Kg) (Yair et al.2010,JGR)
Lightning Potential Index (J/Kg) (Yair et al.2010,JGR)
Lightning Potential Index (J/Kg) (Yair et al.2010,JGR)
Lightning Potential Index (J/Kg) (Yair et al.2010,JGR)
Lightning Potential Index (J/Kg) (Yair et al.2010,JGR)
Lightning Potential Index (J/Kg) (Yair et al.2010,JGR)
Presentation transcript:

Electricité atmosphérique et Production d’oxydes d’azote par les éclairs: Etat des lieux et perspectives Christelle Barthe 1 et Jean-Pierre Pinty Laboratoire d’Aérologie 1 Now at National Center for Atmospheric Research 4 th Meso-NH user’s MeetingApril 23-24, 2007

4 th Meso-NH user’s MeetingApril 23-24, 2007 ice water content [Petersen et al., 2005] ice flux [Deierling, 2006] precipitation rate [Baker et al., 1995; Soula and Chauzy, 2001] NO x production [Lee et al, 1997; Huntrieser et al., 1998] water vapor in the upper troposphere [Price, 2000] climate change index [Reeve and Toumi, 1999] tropical cyclones intensification [Molinari et al., 1994; Fierro et al., 2007] … - A better understanding of a cloud natural process … - An index of storm severity : hail, heavy precipitations, gust winds and … lightning flashes - Lightning flashes are routinely detected  tracers of physical parameters ? Why to model the lightning flashes ?

4 th Meso-NH user’s MeetingApril 23-24, 2007 Meso-NH-elec : flow chart Charges separation Charges transfer and transport Electric field computation Bidirectional leader Branches Charge neutralization NO x production E > E trig E > E prop Dynamical and microphysical processes yes no yes Barthe et al. [2005] Vertical extension of the flash Horizontal extension of the flash

4 th Meso-NH user’s MeetingApril 23-24, 2007 Lightning flashes structure Volume of charge neutralized by an individual flash Barthe and Pinty [2007] Rison et al. [1999] Electric charges are neutralized along the flash channel leading to a decrease of the electric field

4 th Meso-NH user’s MeetingApril 23-24, 2007 Lightning-produced NOx – July 10, 1996 STERAO storm  Physical packages transport : MPDATA microphysics : ICE3 [ Pinty et Jabouille, 1998] electrical scheme [ Barthe et al., 2005] gas scavenging [C. Mari] LiNOx [ Barthe et al., 2007]  flash length and depends on the altitude  n NO (P) = a + b x P (10 21 molecules m -1 ) [ Wang et al., 1998] turbulence 3D : TKE [ Cuxart et al., 2000]  Initialization 10 July STERAO storm 160 x 160 x 50 gridpoints with  x =  y = 1 km and  z variable initial sounding + 3 warm bubbles [ Skamarock et al., 2000] chemical species profiles (HCHO, H 2 O 2, HNO 3, O 3, CO and NO x ) [ Barth et al., 2001]

4 th Meso-NH user’s MeetingApril 23-24, 2007 July 10, 1996 STERAO storm: transition from multicell to supercell 2202 UTC 0102 UTC Meso-NH : 2048 flashes Defer et al. [2001] : 5428 flashes with 50% short duration flashes (< 1 km)

4 th Meso-NH user’s MeetingApril 23-24, 2007 July 10, 1996 STERAO storm: LNOx production NO concentrations measured by the Citation at 11.6 km msl from 2305 to 2311 UTC, km downwind of the core [Dye et al., 2000]  transport of NO x from the boundary layer to the upper troposphere (~ 200 pptv)  LNOx production between 7500 and 13,500 m (peak value ~ 6000 pptv) and dilution (~ 1000 pptv) Vertical cross section of the NO x concentration and the total electric charge density (±0.1, ±0.3 and ± 0.5 nC m -3 ) in the multicellular stage Barthe et al. [2007]

4 th Meso-NH user’s MeetingApril 23-24, 2007 July 10, 1996 STERAO storm: intercomparison exercise Intercomparison exercise STERAO: July 10, 1996 Barth et al., to be submitted to ACPD

4 th Meso-NH user’s MeetingApril 23-24, 2007 Conclusions  Full electric charge cycle in a mesoscale model charges separation, transfer, transport and neutralization  Lightning flash treatment original branching scheme with wide horizontal extension good neutralization efficiency of the flash scheme  Explicit formation of lightning-produced NO x great potential for gaseous chemistry  Simulations in different idealized convective conditions squall line, supercell, multicell storms in 2D and 3D  Cloud electrification crucial to reproduce the cloud polarity high sensitivity to the treatment of the NI processes [Barthe and Pinty, J. Geophys. Res., in revision] part of the code is implemented in the UK MetOffice LEM  Ensemble simulations of electrified clouds [Pinty and Barthe, submitted to Month. Wea. Rev.]

4 th Meso-NH user’s MeetingApril 23-24, 2007 Perspectives  Parallelization efficiency of the lightning algorithm  Integration of the full electrical scheme in the next (4.8) version of Meso-NH ? (***)  Explicit treatment of the ions (**)  Sensitivity to surface properties for coronae effects (*)  Real case simulations: MAP, TELEX, STEPS, AMMA, Mediterranean storms, COPS … (***)  LNOx impact on some chemical species: HNO 3, O 3 … (***)