G. Cowan Lectures on Statistical Data Analysis Lecture 1 page 1 Lectures on Statistical Data Analysis London Postgraduate Lectures on Particle Physics;

Slides:



Advertisements
Similar presentations
G. Cowan 2009 CERN Summer Student Lectures on Statistics1 Introduction to Statistical Methods for High Energy Physics 2009 CERN Summer Student Lectures.
Advertisements

Week 11 Review: Statistical Model A statistical model for some data is a set of distributions, one of which corresponds to the true unknown distribution.
Estimation, Variation and Uncertainty Simon French
G. Cowan Lectures on Statistical Data Analysis 1 Statistical Data Analysis: Lecture 10 1Probability, Bayes’ theorem, random variables, pdfs 2Functions.
G. Cowan Lectures on Statistical Data Analysis Lecture 2 page 1 Statistical Data Analysis: Lecture 2 1Probability, Bayes’ theorem 2Random variables and.
G. Cowan Lectures on Statistical Data Analysis Lecture 12 page 1 Statistical Data Analysis: Lecture 12 1Probability, Bayes’ theorem 2Random variables and.
G. Cowan Lectures on Statistical Data Analysis 1 Statistical Data Analysis: Lecture 8 1Probability, Bayes’ theorem, random variables, pdfs 2Functions of.
G. Cowan 2011 CERN Summer Student Lectures on Statistics / Lecture 41 Introduction to Statistics − Day 4 Lecture 1 Probability Random variables, probability.
G. Cowan RHUL Physics Statistical Methods for Particle Physics / 2007 CERN-FNAL HCP School page 1 Statistical Methods for Particle Physics (2) CERN-FNAL.
K. Desch – Statistical methods of data analysis SS10 Statistical methods of data analysis K. Desch Uni Bonn & Köln SS 2010 Course MSc physics716 Lectures:
G. Cowan Lectures on Statistical Data Analysis Lecture 14 page 1 Statistical Data Analysis: Lecture 14 1Probability, Bayes’ theorem 2Random variables and.
G. Cowan Lectures on Statistical Data Analysis Lecture 13 page 1 Statistical Data Analysis: Lecture 13 1Probability, Bayes’ theorem 2Random variables and.
G. Cowan RHUL Physics Statistical Methods for Particle Physics / 2007 CERN-FNAL HCP School page 1 Statistical Methods for Particle Physics CERN-FNAL Hadron.
Frequently Bayesian The role of probability in data analysis
G. Cowan Lectures on Statistical Data Analysis Lecture 10 page 1 Statistical Data Analysis: Lecture 10 1Probability, Bayes’ theorem 2Random variables and.
G. Cowan Lectures on Statistical Data Analysis 1 Statistical Data Analysis: Lecture 7 1Probability, Bayes’ theorem, random variables, pdfs 2Functions of.
G. Cowan RHUL Physics Bayesian Higgs combination page 1 Bayesian Higgs combination using shapes ATLAS Statistics Meeting CERN, 19 December, 2007 Glen Cowan.
Standard error of estimate & Confidence interval.
Statistical Analysis of Systematic Errors and Small Signals Reinhard Schwienhorst University of Minnesota 10/26/99.
G. Cowan SUSSP65, St Andrews, August 2009 / Statistical Methods 1 page 1 Statistical Methods in Particle Physics Lecture 1: Bayesian methods SUSSP65.
1 Probability and Statistics  What is probability?  What is statistics?
G. Cowan Lectures on Statistical Data Analysis Lecture 1 page 1 Lectures on Statistical Data Analysis YETI IPPP Durham Young Experimentalists and.
G. Cowan Lectures on Statistical Data Analysis Lecture 3 page 1 Lecture 3 1 Probability (90 min.) Definition, Bayes’ theorem, probability densities and.
Dr. Gary Blau, Sean HanMonday, Aug 13, 2007 Statistical Design of Experiments SECTION I Probability Theory Review.
Introduction to Probability Theory March 24, 2015 Credits for slides: Allan, Arms, Mihalcea, Schutze.
Lecture 5a: Bayes’ Rule Class web site: DEA in Bioinformatics: Statistics Module Box 1Box 2Box 3.
G. Cowan Statistical Methods in Particle Physics1 Statistical Methods in Particle Physics Day 1: Introduction 清华大学高能物理研究中心 2010 年 4 月 12—16 日 Glen Cowan.
1 Introduction to Statistical Methods for High Energy Physics Glen Cowan 2006 CERN Summer Student Lectures CERN Summer Student Lectures on Statistics Glen.
Statistical Data Analysis and Simulation Jorge Andre Swieca School Campos do Jordão, January,2003 João R. T. de Mello Neto.
Practical Statistics for Particle Physicists Lecture 3 Harrison B. Prosper Florida State University European School of High-Energy Physics Anjou, France.
Bayesian vs. frequentist inference frequentist: 1) Deductive hypothesis testing of Popper--ruling out alternative explanations Falsification: can prove.
G. Cowan CLASHEP 2011 / Topics in Statistical Data Analysis / Lecture 1 1 Topics in Statistical Data Analysis for HEP Lecture 1: Parameter Estimation CERN.
G. Cowan Statistical Data Analysis / Stat 1 1 Statistical Data Analysis 2015/16 London Postgraduate Lectures on Particle Physics; University of London.
Uniovi1 Some statistics books, papers, etc. G. Cowan, Statistical Data Analysis, Clarendon, Oxford, 1998 see also R.J. Barlow,
G. Cowan Lectures on Statistical Data Analysis Lecture 1 page 1 Lectures on Statistical Data Analysis RWTH Aachen Graduiertenkolleg February, 2007.
G. Cowan Lectures on Statistical Data Analysis Lecture 4 page 1 Statistical Data Analysis: Lecture 4 1Probability, Bayes’ theorem 2Random variables and.
1 Introduction to Statistics − Day 4 Glen Cowan Lecture 1 Probability Random variables, probability densities, etc. Lecture 2 Brief catalogue of probability.
G. Cowan Lectures on Statistical Data Analysis Lecture 8 page 1 Statistical Data Analysis: Lecture 8 1Probability, Bayes’ theorem 2Random variables and.
1 Introduction to Statistics − Day 3 Glen Cowan Lecture 1 Probability Random variables, probability densities, etc. Brief catalogue of probability densities.
G. Cowan TAE 2010 / Statistics for HEP / Lecture 11 Statistical Methods for HEP Lecture 1: Introduction Taller de Altas Energías 2010 Universitat de Barcelona.
G. Cowan NExT Workshop, 2015 / GDC Lecture 11 Statistical Methods for Particle Physics Lecture 1: introduction & statistical tests Fifth NExT PhD Workshop:
G. Cowan Lectures on Statistical Data Analysis Lecture 4 page 1 Lecture 4 1 Probability (90 min.) Definition, Bayes’ theorem, probability densities and.
G. Cowan Computing and Statistical Data Analysis / Stat 9 1 Computing and Statistical Data Analysis Stat 9: Parameter Estimation, Limits London Postgraduate.
1 Introduction to Statistics − Day 2 Glen Cowan Lecture 1 Probability Random variables, probability densities, etc. Brief catalogue of probability densities.
G. Cowan Lectures on Statistical Data Analysis Lecture 9 page 1 Statistical Data Analysis: Lecture 9 1Probability, Bayes’ theorem 2Random variables and.
Statistical NLP: Lecture 4 Mathematical Foundations I: Probability Theory (Ch2)
G. Cowan Computing and Statistical Data Analysis / Stat 1 1 Computing and Statistical Data Analysis London Postgraduate Lectures on Particle Physics; University.
G. Cowan SUSSP65, St Andrews, August 2009 / Statistical Methods 1 page 1 Statistical Methods in Particle Physics Lecture 1: Bayesian methods SUSSP65.
G. Cowan Lectures on Statistical Data Analysis Lecture 6 page 1 Statistical Data Analysis: Lecture 6 1Probability, Bayes’ theorem 2Random variables and.
G. Cowan Lectures on Statistical Data Analysis Lecture 5 page 1 Statistical Data Analysis: Lecture 5 1Probability, Bayes’ theorem 2Random variables and.
G. Cowan Lectures on Statistical Data Analysis Lecture 12 page 1 Statistical Data Analysis: Lecture 12 1Probability, Bayes’ theorem 2Random variables and.
G. Cowan Lectures on Statistical Data Analysis Lecture 10 page 1 Statistical Data Analysis: Lecture 10 1Probability, Bayes’ theorem 2Random variables and.
G. Cowan Statistical methods for HEP / Freiburg June 2011 / Lecture 1 1 Statistical Methods for Discovery and Limits in HEP Experiments Day 1: Introduction,
G. Cowan Aachen 2014 / Statistics for Particle Physics, Lecture 11 Statistical Methods for Particle Physics Lecture 1: probability, random variables, MC.
Outline Historical note about Bayes’ rule Bayesian updating for probability density functions –Salary offer estimate Coin trials example Reading material:
1 Introduction to Statistical Methods for High Energy Physics Glen Cowan 2005 CERN Summer Student Lectures CERN Summer Student Lectures on Statistics Glen.
Statistics for HEP Lecture 1: Introduction and basic formalism
Bayesian data analysis
Lectures on Statistical Data Analysis
Lecture 4 1 Probability (90 min.)
TAE 2018 / Statistics Lecture 1
Computing and Statistical Data Analysis / Stat 8
Statistical Methods for Particle Physics (I)
Computing and Statistical Data Analysis Stat 3: The Monte Carlo Method
Lecture 4 1 Probability Definition, Bayes’ theorem, probability densities and their properties, catalogue of pdfs, Monte Carlo 2 Statistical tests general.
Computing and Statistical Data Analysis / Stat 7
Lecture 4 1 Probability Definition, Bayes’ theorem, probability densities and their properties, catalogue of pdfs, Monte Carlo 2 Statistical tests general.
CS639: Data Management for Data Science
Computing and Statistical Data Analysis / Stat 10
Presentation transcript:

G. Cowan Lectures on Statistical Data Analysis Lecture 1 page 1 Lectures on Statistical Data Analysis London Postgraduate Lectures on Particle Physics; University of London MSci course PH4515 Glen Cowan Physics Department Royal Holloway, University of London Course web page:

G. Cowan Lectures on Statistical Data Analysis Lecture 1 page 2 Statistical Data Analysis: Outline by Lecture 1Probability, Bayes’ theorem 2Random variables and probability densities 3Expectation values, error propagation 4Catalogue of pdfs 5The Monte Carlo method 6Statistical tests: general concepts 7Test statistics, multivariate methods 8Goodness-of-fit tests 9Parameter estimation, maximum likelihood 10More maximum likelihood 11Method of least squares 12Interval estimation, setting limits 13Nuisance parameters, systematic uncertainties 14Examples of Bayesian approach

G. Cowan Lectures on Statistical Data Analysis Lecture 1 page 3 Some statistics books, papers, etc. G. Cowan, Statistical Data Analysis, Clarendon, Oxford, 1998 see also R.J. Barlow, Statistics, A Guide to the Use of Statistical in the Physical Sciences, Wiley, 1989 see also hepwww.ph.man.ac.uk/~roger/book.html L. Lyons, Statistics for Nuclear and Particle Physics, CUP, 1986 F. James., Statistical and Computational Methods in Experimental Physics, 2nd ed., World Scientific, 2006 S. Brandt, Statistical and Computational Methods in Data Analysis, Springer, New York, 1998 (with program library on CD) W.M. Yao et al. (Particle Data Group), Review of Particle Physics, Journal of Physics G 33 (2006) 1; see also pdg.lbl.gov sections on probability statistics, Monte Carlo

G. Cowan Lectures on Statistical Data Analysis Lecture 1 page 4 Data analysis in particle physics Observe events of a certain type Measure characteristics of each event (particle momenta, number of muons, energy of jets,...) Theories (e.g. SM) predict distributions of these properties up to free parameters, e.g., , G F, M Z,  s, m H,... Some tasks of data analysis: Estimate (measure) the parameters; Quantify the uncertainty of the parameter estimates; Test the extent to which the predictions of a theory are in agreement with the data.

G. Cowan Lectures on Statistical Data Analysis Lecture 1 page 5 Dealing with uncertainty In particle physics there are various elements of uncertainty: theory is not deterministic quantum mechanics random measurement errors present even without quantum effects things we could know in principle but don’t e.g. from limitations of cost, time,... We can quantify the uncertainty using PROBABILITY

G. Cowan Lectures on Statistical Data Analysis Lecture 1 page 6 A definition of probability Consider a set S with subsets A, B,... Kolmogorov axioms (1933) From these axioms we can derive further properties, e.g.

G. Cowan Lectures on Statistical Data Analysis Lecture 1 page 7 Conditional probability, independence Also define conditional probability of A given B (with P(B) ≠ 0): E.g. rolling dice: Subsets A, B independent if: If A, B independent, N.B. do not confuse with disjoint subsets, i.e.,

G. Cowan Lectures on Statistical Data Analysis Lecture 1 page 8 Interpretation of probability I. Relative frequency A, B,... are outcomes of a repeatable experiment cf. quantum mechanics, particle scattering, radioactive decay... II. Subjective probability A, B,... are hypotheses (statements that are true or false) Both interpretations consistent with Kolmogorov axioms. In particle physics frequency interpretation often most useful, but subjective probability can provide more natural treatment of non-repeatable phenomena: systematic uncertainties, probability that Higgs boson exists,...

G. Cowan Lectures on Statistical Data Analysis Lecture 1 page 9 Bayes’ theorem From the definition of conditional probability we have, and but, so Bayes’ theorem First published (posthumously) by the Reverend Thomas Bayes (1702−1761) An essay towards solving a problem in the doctrine of chances, Philos. Trans. R. Soc. 53 (1763) 370; reprinted in Biometrika, 45 (1958) 293.

G. Cowan Lectures on Statistical Data Analysis Lecture 1 page 10 The law of total probability Consider a subset B of the sample space S, B ∩ A i AiAi B S divided into disjoint subsets A i such that ∪ i A i = S, → → → law of total probability Bayes’ theorem becomes

G. Cowan Lectures on Statistical Data Analysis Lecture 1 page 11 An example using Bayes’ theorem Suppose the probability (for anyone) to have AIDS is: ← prior probabilities, i.e., before any test carried out Consider an AIDS test: result is  or  ← probabilities to (in)correctly identify an infected person ← probabilities to (in)correctly identify an uninfected person Suppose your result is . How worried should you be?

G. Cowan Lectures on Statistical Data Analysis Lecture 1 page 12 Bayes’ theorem example (cont.) The probability to have AIDS given a + result is i.e. you’re probably OK! Your viewpoint: my degree of belief that I have AIDS is 3.2% Your doctor’s viewpoint: 3.2% of people like this will have AIDS ← posterior probability

G. Cowan Lectures on Statistical Data Analysis Lecture 1 page 13 Frequentist Statistics − general philosophy In frequentist statistics, probabilities are associated only with the data, i.e., outcomes of repeatable observations (shorthand: ). Probability = limiting frequency Probabilities such as P (Higgs boson exists), P (0.117 <  s < 0.121), etc. are either 0 or 1, but we don’t know which. The tools of frequentist statistics tell us what to expect, under the assumption of certain probabilities, about hypothetical repeated observations. The preferred theories (models, hypotheses,...) are those for which our observations would be considered ‘usual’.

G. Cowan Lectures on Statistical Data Analysis Lecture 1 page 14 Bayesian Statistics − general philosophy In Bayesian statistics, use subjective probability for hypotheses: posterior probability, i.e., after seeing the data prior probability, i.e., before seeing the data probability of the data assuming hypothesis H (the likelihood) normalization involves sum over all possible hypotheses Bayes’ theorem has an “if-then” character: If your prior probabilities were  (H), then it says how these probabilities should change in the light of the data. No general prescription for priors (subjective!)

G. Cowan Lectures on Statistical Data Analysis Lecture 1 page 15 Wrapping up lecture 1 Up to now we’ve talked some abstract properties of probability: definition and interpretation, Bayes’ theorem,... Next we will look at random variables (numerical labels for the outcome of an experiment) and we will describe them using probability density functions.