Helically Twisted Shocks in the M87 Jet Philip Hardee 1, Andrei Lobanov 2 & Jean Eilek 3 1 The University of Alabama, Tuscaloosa, AL, USA 2 Max-Planck.

Slides:



Advertisements
Similar presentations
Introduction to Plasma-Surface Interactions Lecture 6 Divertors.
Advertisements

Probing the TeV Emission and Jet Collimation Regions in M87
Gabriele Giovannini Dipartimento di Astronomia, Bologna University Istituto di Radioastronomia - INAF EVN observations of M87 as follow-up on a recent.
Modeling the SED and variability of 3C66A in 2003/2004 Presented By Manasvita Joshi Ohio University, Athens, OH ISCRA, Erice, Italy 2006.
The CD Kink Instability in Magnetically Dominated Relativistic Jets * The relativistic jets associated with blazar emission from radio through TeV gamma-rays.
Neutron Stars and Black Holes
Multi-Wavelength Polarizations of Western Hotspot of Pictor A Mahito Sasada (Kyoto University) S. Mineshige (Kyoto Univ.), H. Nagai (NAOJ), M. Kino (JAXA),
Stability Properties of Magnetized Spine-Sheath Relativistic Jets Philip Hardee 1 (UA), Yosuke Mizuno 2 (NSSTC/MSFC) & Ken-Ichi Nishikawa 3 (NSSTC/UAH)
M87 - WalkerVSOP-2 Symposium, Sagamihara, Japan Dec IMAGING A JET BASE - PROSPECTS WITH M87 R. Craig Walker NRAO Collaborators: Chun Ly (UCLA - was.
Jets from Active Galactic Nuclei: Observations and Models
The Radio/X-ray Interaction in Abell 2029 Tracy Clarke (Univ. of Virginia) Collaborators: Craig Sarazin (UVa), Elizabeth Blanton (UVa)
Radio Galaxies in X-Ray Light: Problems and Processes Dave De Young NOAO Radio Galaxies in the Chandra Era 8-11 July 2008.
Comparing the Jets in M87 & 3C273 D. E. Harris, SAO Biretta, Cheung, Jester, Junor, Marshall, Perlman, Sparks, & Wilson.
Mitch Begelman JILA, University of Colorado SPECIAL RELATIVITY FOR JET MODELERS.
A Radio and X-ray Study of Particle Acceleration in Centaurus A’s Jet Joanna Goodger University of Hertfordshire Supervisors: Martin Hardcastle and Judith.
Centaurus A Kraft, Hardcastle, Croston, Worrall, Birkinshaw, Nulsen, Forman, Murray, Goodger, Sivakoff,Evans, Sarazin, Harris, Gilfanov, Jones X-ray composite.
X-ray Observations of Large Scale Jets in AGN D. E. Harris, SAO Collaborators: H. Krawczynski, C. Cheung, S. Jester, M. Hardcastle E. Perlman, J. Biretta,
BLACK HOLE Movie courtesy Wolfgang Steffen, University Guadalajara, Mexico.
The Long, Bright Extended X-ray Jet of OJ287 Alan Marscher & Svetlana Jorstad Boston University Research Web Page:
Astrophysical Jets Robert Laing (ESO). Galactic black-hole binary system Gamma-ray burst Young stellar object Jets are everywhere.
1 3D Simulations for the Elliptic Jet W. Bo (Aug 12, 2009) Parameters: Length = 8cm Elliptic jet: Major radius = 0.8cm, Minor radius = 0.3cm Striganov’s.
Numerical Simulations of FRI jets Manel Perucho Pla Max-Planck-Institut für Radioastronomie and J.M. Martí (Universitat de València)
Physics 777 Plasma Physics and Magnetohydrodynamics (MHD) Instructor: Gregory Fleishman Lecture 6. Transport of Radiation 14 October 2008.
Role of Magnetic Field for Instabilities in Relativistic Jets Yosuke Mizuno Institute for Theoretical Physics Goethe University Frankfurt am Main Krakow.
Star Formation Research Now & With ALMA Debra Shepherd National Radio Astronomy Observatory ALMA Specifications: Today’s (sub)millimeter interferometers.
Kinematics and coronal field strength of an untwisting jet in a polar coronal hole observed by SDO/AIA H. Chen, J. Zhang, & S. Ma ILWS , Beijing.
Shock acceleration of cosmic rays Tony Bell Imperial College, London.
Multiwavelength observations of a partially occulted solar flare Laura Bone, John C.Brown, Lyndsay Fletcher.
Radio Jet Disruption in Cooling Cores OR, can radio jets solve the cooling core problem? OR, how do cooling cores disrupt radio jets?
Jet Variability Under the Microscope Eric Perlman - Florida Institute of Technology Collaborators: Mihai Cara, Sayali Avachat, Raymond Simons, Matt Bourque.
The luminous X-ray hotspot in 4C 74.26: jet dynamics at work Mary Erlund Institute of Astronomy, Cambridge, UK A.C. Fabian, K.M. Blundell, C. Moss and.
Kinematics of parsec-scale radio jet in 3C48 Tao An 1, In collaboration with X.Y.Hong 1, M.J.Hardcastle 2, T.Venturi 3, D.Worrall 2,T.J.Pearson 4, Z.-Q.Shen.
The jet of Mrk 501 from millions of Schwarzschild radii down to a few hundreds Marcello Giroletti INAF Istituto di Radioastronomia and G. Giovannini, G.
Kelvin-Helmholtz modes revealed by the transversal structure of the jet in Manuel Perucho Andrei P. Lobanov Max-Planck-Institut für Radioastronomie.
THE HST VIEW OF LINERS AND OTHER LOCAL AGN MARCO CHIABERGE CNR - Istituto di Radioastronomia - Bologna Alessandro Capetti (INAF-OATo) Duccio Macchetto.
Quasar large scale jets: Fast and powerful or weak and slow, but efficient accelerators? Markos Georganopoulos 1,2 1 University of Maryland, Baltimore.
1 Juri Poutanen University of Oulu, Finland (Stern, Poutanen, 2006, MNRAS, 372, 1217; Stern, Poutanen, 2007, MNRAS, submitted, astro- ph/ ) A new.
Discovery of Black Holes with the Hubble Space Telescope Juan P. Madrid Parent and Son Evening Under the Stars.
Real vs. Simulated Relativistic Jets Socorro 2003 Instituto de Astrofísica de Andalucía (CSIC), Granada, Spain Institut d’Estudis Espacials de Catalunya/CSIC,
A numerical study of the afterglow emission from GRB double-sided jets Collaborators Y. F. Huang, S. W. Kong Xin Wang Department of Astronomy, Nanjing.
1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.
3C120 R. Craig Walker National Radio Astronomy Observatory Socorro, NM Collaborators: J.M. Benson, S.C. Unwin, M.B. Lystrup, T.R.Hunter, G. Pilbratt, P.E.
AGN Jets: A Review for Comparison with Microquasars & GRBs Alan Marscher Boston University Research Web Page:
Jet dynamics and stability Manel Perucho Universitat de València The innermost regions of relativistic jets and their magnetic fields Granada, June 2013.
3D Crab Model and comparison with Chandra result Pulsar Wind Nebulae and Particle Acceleration in the Pulsar Magnetosphere Shibata, S., Tomatsuri, H.,
The MOJAVE Program: Studying the Relativistic Kinematics of AGN Jets Jansky Postdoctoral Fellow National Radio Astronomy Observatory Matthew Lister.
Jets Two classes of jets from X-ray binaries
Jet-Environment Interactions in FRI Radio Galaxies Robert Laing (ESO)
Magnetohydrodynamic Effects in (Propagating) Relativistic Ejecta Yosuke Mizuno Center for Space Plasma and Aeronomic Research University of Alabama in.
Continuum correlations in accreting X-ray pulsars Mikhail Gornostaev, Konstantin Postnov (SAI), Dmitry Klochkov (IAAT, Germany) 2015, MNRAS, 452, 1601.
The continuing saga of the explosive event(s) in the M87 jet D. E. Harris, SAO collaborators/co-authors C. C. Cheung J. A. Biretta F. Aharonian L. Stawarz.
Radio-Loud AGN Model (Credit: C.M. Urry and P. Padovani ) These objects also have hot, ADAF-type accretion flows, where the radiative cooling is very.
VHE  -ray Emission From Nearby FR I Radio Galaxies M. Ostrowski 1 & L. Stawarz 1,2 1 Astronomical Observatory, Jagiellonian University 2 Landessternwarte.
Multi - emission from large-scale jets Fabrizio Tavecchio INAF – Osservatorio Astronomico di Brera.
Relativistic MHD Simulations of jets Relativistic MHD Simulations of jets Abstract We have performed 3D RMHD simulations to investigate the stability and.
The non-thermal broadband spectral energy distribution of radio galaxies Gustavo E. Romero Instituto Argentino de Radio Astronomía (IAR-CCT La Plata CONICET)
The impact of magnetic turbulence spectrum on particle acceleration in SNR IC443 I.Telezhinsky 1,2, A.Wilhelm 1,2, R.Brose 1,3, M.Pohl 1,2, B.Humensky.
American Astronomical Society – Austin, TX (2008) Patrick Slane (CfA) In collaboration with: D. Helfand (Columbia) S. Reynolds (NC State) B. Gaensler (U.
Generation of anomalously energetic suprathermal electrons by an electron beam interacting with a nonuniform plasma Dmytro Sydorenko University of Alberta,
Insights on Jet Physics & High- Energy Emission Processes from Optical Polarimetry Eric S. Perlman Florida Institute of Technology Collaborators: C. A.
1 Fluid Theory: Magnetohydrodynamics (MHD). 2 3.
Implications of VHE Emission in Gamma-Ray AGN Amir Levinson, Tel Aviv University.
T HE VORTICAL MECHANISM OF GENERATION & COLLIMATION OF THE ASTROPHYSICAL JETS M.G. A BRAHAMYAN Yerevan State University, Armenia.
Gamma Rays from the Radio Galaxy M87
A VLBA MOVIE OF THE JET LAUNCH REGION IN M87
Radio Galaxies Part 5.
Fluid Theory: Magnetohydrodynamics (MHD)
The origin nuclear X-ray emission in the nuclei of radio galaxy-FR Is
Modelling of non-thermal radiation from pulsar wind nebulae
Compact radio jets and nuclear regions in galaxies
Presentation transcript:

Helically Twisted Shocks in the M87 Jet Philip Hardee 1, Andrei Lobanov 2 & Jean Eilek 3 1 The University of Alabama, Tuscaloosa, AL, USA 2 Max-Planck Institut für Radioastronomie, Bonn, Germany 3 New Mexico Tech/NRAO, Socorro, NM, USA RadioGals08, Cambridge, MA

Introduction Questions potentially answered by studying jet structure Structure: What is the cause? Outflow: What are the jet plasma conditions? Dynamics: Are proper motions flow or pattern? Microphysics: Where are particles accelerated? Basic facts: D ~ 16 Mpc, 1” ~ 77 pc Nuclear region: M bh ~ 3 x 10 9 M sol ; initial collimation < 100R G (Junor, Biretta & Livio 1999) radio: twisted structure & limb-brightened (Owen, Hardee & Cornwell 1989) optical: brighter knots & spine than radio (Sparks, Biretta & Macchetto 1996) X-ray: knots, interknot emission & spectrum steepens along jet (Perlman & Wilson 2005) Marshall et al. (x-ray) Zhou et al. (radio) Perlman et al. (optical)

VLA 15GHz: (Biretta, Zhou & Owen 1995) Similar Optical & Radio Structure HST R band: (Perlman et al. 2001) Biretta, Sparks & Macchetto et al. (1999) DEFIH D E F I H Twisted Filament (?) & Filaments (?) Filament Crossing (?) & Twist (?) E D F A A

Image Analysis & Structure Single gaussian (SG): ridge line Double gaussian (DG): internal 550 slices Dual twisted filament structure recovered by double Gaussian in VLA and HST images. VLA HST SG  13.8” constant (HST-1 to Knot A) DG  1”) - 3”(Knot 12”)

Typical Radio “Knot” Motions (HST-1) < 0.25c (Cheung, Harris & Stawarz 2007) (D)  0.40c (Biretta, Zhou & Owen 1995) (F)  0.90c (Biretta, Zhou & Owen 1995) Fast Optical Motions ( Biretta, Sparks & Macchetto 1999)  ob  6c through HST-1  Viewing angle  j < 19 o  ob  5c through Knot D  ob  4c through Knot E Fast Radio Motions (Cheung et al. 2007; Biretta et al. 1995)  ob >  3c through HST-1  Viewing angle  j < 35 o  ob  2.5c through Knot D Implications Superluminal speeds decrease  bulk speed Subluminal speeds increase  pattern speed (Biretta, Sparks & Macchetto 1999) subluminal optical superluminal optical Observed Proper Motions/Viewing Angle

Accelerating Pattern/Viewing Angle Jet HST-1 & Viewing Angle (A) 6c    7.5  = 15 0 viewing angle (B) 3c    4  = 30 0 viewing angle Pattern Acceleration (HST-1 to Knot A ) DG  2’  3”   E ob increase 50% SG  13.8”   H ob  constant Pattern Speed (radio motions) : (1) Knot D --  E ob  0.4c – (slow pattern) (2) Knot F --  E ob  0.9c – (fast pattern) Case A: fast jet Case B: slow jet F D Observed change < Intrinsic change

Decelerating Jet/Accelerating Sheath Decelerating Expansion (HST-1 to Knot D)  radius expansion factor 3.5 (Case A) 6c    7.5 to 5c    5  = 15 0 viewing angle (Case B) 3c    4 to 2.5c    3.5  = 30 0 viewing angle Jet Deceleration/Sheath Acceleration: KH interface driven moving shocks Jet energy flux transferred to sheath Some Basic Assumptions: Treat Jet like radial wind Jet & sheath pressure balance Sheath thickness  1.5 R j (set by E mode) jet sheath Helically Twisted Sheath Shock Helically Twisted Dual Filament Jet Shock: Kelvin-Helmholtz Elliptical Mode

KH Twisted Filaments Theoretical Pressure structure of Elliptical surface mode Theoretical Pressure structure of 1 st Elliptical body mode Intensity Image & Magnetic Pressure Cross Sections (Hardee et al. 1997) Dual Helically Twisted filaments

Decelerating Jet/Accelerating Sheath Conserve Jet Energy/Mass Flux (to Knot A)  obtain jet deceleration (Case A) 6c    7.5 to 3c    3 (fast jet) (Case B) 3c    4 to 2c    2 (slow jet) Case B: slow  = 30 0 viewing angle Lose Fraction Jet Energy Flux  calculate sheath density & speed 1. E mode wavelength/speed increase & near resonance 2. Sheath energy flux = lost jet energy flux (1) Slow Pattern (2) Fast Pattern P 0 : dyne cm -2 L 0 : ~ erg s -1 M sol : ~ yr -1

Growth, Saturation & Structure Pressure and velocity changes Approximate Apparent Dual Filament Pressure Structure Intrinsic Pressure & Velocity Structure (multiple modes shown) Spatial Growth Rates 1D cuts along jet at fixed r/R j HST-1Knot A transonic supersonic

Morphology HST-1 to Knot A Slow Jet & Fast 30 o viewing angle Fast Jet & Slow 15 o viewing angle 15GHz: (Biretta, Zhou & Owen 1995) R band: (Perlman et al. 2001) B  n j 2/3 ;  = 0.7 EDFI D E F

Summary/Conclusions 1 pc 0.03 pc Dual twisted filament pair from HST-1 to Knot A. Radio/optical filament structure correlated ( optical more compact ). Oscillation described by SG = 13.8” ( long wavelength Hs mode ). Dual twisted filament pair DG = 2 - 3” ( resonant frequency Es mode ). Knots are not filament crossing projection. ( other shock/adiabatic compression ) Energy/Mass Flux conserving models ( ~ erg s -1, ~ M sol yr -1 ) : 1) Decelerate jet/accelerate sheath, increase sound speed ( Es mode resonant ) 2) Pattern speed  twisted shocks weaken & filling factor reduced 10s (HST-1) >  shock M shock > few (knot jet surface particle injection energy spectrum steepens 3) Jet transonic at Knot A  rapid destabilization 4) Morphology  lower Lorentz factor, larger viewing angle, faster pattern. (fastest optical proper motions phase effects?)