Before you start it would be helpful to… Recall the layout of the periodic table Be able to balance simple equations REDOX.

Slides:



Advertisements
Similar presentations
Oxidation and Reduction (Redox) Lance S. Lund April 19, 2011.
Advertisements

Redox Reactions Chapter 18 + O2 .
REDOX A guide for A level students KNOCKHARDY PUBLISHING 2008 SPECIFICATIONS.
Oxidation-reduction reactions
Redox Reactions Chapter 18 + O 2 . Oxidation-Reduction (Redox) Reactions “redox” reactions: rxns in which electrons are transferred from one species.
REDOX A guide for National 4 and 5 students KNOCKHARDY PUBLISHING.
Recap Precipitation Reactions: ions combine to form insoluble products Neutralization Reactions: H + ions and OH - ions combine to form H 2 O Next: Oxidation-Reduction.
Lecture 223/18/05 Seminar today 4:30 Review: Tomorrow TSC Tonight: 7-8 in Olin Hall room 107 at WPI Sheldon Krimsky from Tufts Relationship between.
1 Chapter 5 Chemical Reactions 5.3 Oxidation-Reduction Reactions.
Balancing Chemical Equations A chemical reaction is a process by which one set of chemicals is transformed into a new set of chemicals. A chemical equation.
OXIDATION REDUCTION REACTIONS. Rules for Assigning Oxidation States The oxidation number corresponds to the number of electrons, e -, that an atom loses,
Redox Reactions. What is redox? Redox reactions involve a transfer of electrons. Oxidation – involves losing electrons (increase in oxidation number)
Oxidation and Reduction. Historically.... Oxidation was defined as the addition of oxygen to a substance Eg. when coal was burned C + O 2 CO 2 or the.
Electrochemistry.
 Explanation of variable oxidation states:  All form +2 OS except Sc (loss of 4s electrons)  Max OS in theory is loss/use of 4s and 3d electrons. 
Oxidation states This is a method of interpreting redox reactions This method, also called oxidation number, assigns numbers to atoms to show how many.
Electrochemistry : Oxidation and Reduction Electrochemical Reaction - Chemical reaction that involves the flow of electrons. Redox Reaction (oxidation-reduction.
UNIT 6: ELECTROCHEMISTRY. REDOX REACTIONS Redox is short for ‘oxidation and reduction’ Oxidation refers to substances that combine with oxygen Iron rusting,
Electrochemistry Reduction-Oxidation. Oxidation Historically means “to combine with oxygen” Reactions of substances with oxygen, ie Combustion, Rusting.
Redox Reactions.
Oxidation Numbers & Redox Reactions How to Make Balancing Redox Reactions a Relatively Painless Process.
REDOX.
Redox Reactions Year 11 Chemistry ~ Unit 2.
Redox Reactions.
Redox Reactions. Oxidation Reduction Oxidation and Reduction Oxidation: Gain of oxygen Loss of electrons Reduction: Loss of oxygen Gain of electrons.
1. OXIDATION REDUCTION (a) Addition of oxygen Removal of oxygen (b) Removal of hydrogen Addition of hydrogen (c) Loss of electron Gain of electron (d)
CHAPTER 5 ANALYSING OXIDANTS AND REDUCTANTS. REDOX REACTIONS Redox reactions involve complementary processes of oxidation and reduction, and can be identified.
Objective: Determine the equivalence point. Equivalence point n OH - = n H + If 25.00mL of M NaOH is needed to react with mL of HCl. What is.
AS Chemistry OXIDATION STATES, HALF EQUATIONS and REDOX REACTIONS.
Redox Difficult but necessary. Obviously: Oxidation is adding oxygen 2H 2 + O 2  2H 2 O Reduction is removing oxygen 2FeO + C  2Fe + CO 2 But also oxidation.
Chapter 19 Oxidation - Reduction Reactions 19.1 Oxidation and Reduction.
1 Chapter 19 Oxidation and Reduction (basic facts) A substance is oxidized if it loses electrons (becomes more positive) A substance is reduced if it gains.
Chapter 16 Oxidation-Reduction Reactions. Objectives 16.1 Analyze the characteristics of an oxidation reduction reaction 16.1 Distinguish between oxidation.
Oxidation and Reduction ……………………….. Objectives Oxidised, reduced Definition- oxidising/reducing agent, oxidant/reductant Rules of oxidation number Refer.
Redox Reactions. Redox is the abbreviated way to write reduction- oxidation reaction. Redox is the abbreviated way to write reduction- oxidation reaction.
Redox Reactions. REDOX-OXIDATION STATES Day One.
Redox Reactions Chapter 18 + O 2 . Oxidation-Reduction (Redox) Reactions “redox” reactions: rxns in which electrons are transferred from one species.
Oxidation-Reduction Topic etc /
Oxidation States Review: Redox reactions involve one substance being oxidised and another reduced. What is oxidation? What is reduction?
Oxidation-Reduction Reactions
REDOX CONTENTS Definitions of oxidation and reduction Calculating oxidation state Use of H, O and F in calculating oxidation state Naming compounds.
Where do those electrons go? An introduction to oxidation and Reduction.
Calculating and using oxidation numbers. 1 The oxidation number of any free, uncombined element is zero. This includes polyatomic molecules of elements.
Unit: Electrochemistry
3.1.7 Redox. A redox reaction is one in which both reduction and oxidation take place at the same time. The original definition of oxidation was the formation.
Oxidation Numbers. Oxidation numbers Know what oxidation numbers are Understand oxidation and reduction in terms of electron transfer and changes in oxidation.
1 Chapter 20 Oxidation-Reduction Reactions (Redox Reactions)
9.1 Oxidation and Reduction Part 1 IB Chemistry SL Mrs. Page 1 Photo from:
Oxidation and Reduction Reactions (called “redox”) OBJECTIVES Define the terms oxidation and reduction.
REDOX reactions Oxidation and Reduction. Redox chemistry The study of oxidation and reduction reactions Oxidation and reduction reactions involve the.
RedOx Chapter 18. Oxidation- Reduction Reactions Redox or oxidation-reduction reactions are reactions that involve a transfer of electrons. Oxidation.
Redox Reactions.
Chemistry 200 Fundamental G Oxidation & Reduction.
Electrochemistry : Oxidation and Reduction
Oxidation-Reduction Reactions
Oxidation-Reduction Reactions
Oxidation-Reduction Reactions
2.6 Redox Part 1. a. demonstrate an understanding of:
Electro-chemistry CHAPTER 15
A guide for A level students KNOCKHARDY PUBLISHING
2.6.1 Oxidation Numbers 4/17/2019.
2.6.1 Oxidation Numbers 4/28/2019.
POWER POINT PRESENTATION ON OXIDATION NUMBERS
Oxidation-Reduction Reactions
Oxidation-Reduction Reactions
Oxidation-Reduction Reactions
Oxidation-Reduction Reactions
2.6.1 Oxidation Numbers 11/5/2019.
Presentation transcript:

Before you start it would be helpful to… Recall the layout of the periodic table Be able to balance simple equations REDOX

CONTENTS Definitions of oxidation and reduction Calculating oxidation state Use of H, O and F in calculating oxidation state Naming compounds Redox reactions Balancing ionic half equations Combining half equations to form a redox equation Revision check list REDOX

OXIDATION GAIN OF OXYGEN 2Mg + O 2 ——> 2MgO magnesium has been oxidised as it has gained oxygen REMOVAL (LOSS) OF HYDROGEN C 2 H 5 OH ——> CH 3 CHO + H 2 ethanol has been oxidised as it has ‘lost’ hydrogen OXIDATION & REDUCTION - Definitions

REDUCTION GAIN OF HYDROGEN C 2 H 4 + H 2 ——> C 2 H 6 ethene has been reduced as it has gained hydrogen REMOVAL (LOSS) OF OXYGEN CuO + H 2 ——> Cu + H 2 O copper(II) oxide has been reduced as it has ‘lost’ oxygen However as chemistry became more sophisticated, it was realised that another definition was required

... OXIDATION Removal (loss) of electrons species will get less negative or more positive REDUCTION Gain of electrons species will become more negative or less positive REDOX When reduction and oxidation take place OXIDATION AND REDUCTION IN TERMS OF ELECTRONS Oxidation and reduction are not only defined as changes in O and H OXIDATION & REDUCTION - Definitions

... OXIDATION Removal (loss) of electrons species will get less negative or more positive REDUCTION Gain of electrons species will become more negative or less positive REDOX When reduction and oxidation take place OXIDATION AND REDUCTION IN TERMS OF ELECTRONS Oxidation and reduction are not only defined as changes in O and H OXIDATION & REDUCTION - Definitions OIL - Oxidation Is the Loss of electrons RIG - Reduction Is the Gain of electrons

Used to...tell if oxidation or reduction has taken place work out what has been oxidised and/or reduced ATOMS AND SIMPLE IONS The number of electrons which must be added or removed to become neutral atomsNa in Na= 0neutral already... no need to add any electrons cationsNa in Na + = +1need to add 1 electron to make Na + neutral anionsCl in Cl¯ = -1 need to take 1 electron away to make Cl¯ neutral OXIDATION NUMBER

Q. What are the oxidation states of the elements in the following? a) C b) Fe 3+ c) Fe 2+ d) O 2- e) He f) Al 3+ Q. What are the oxidation states of the elements in the following? a) C b) Fe 3+ c) Fe 2+ d) O 2- e) He f) Al 3+ Used to...tell if oxidation or reduction has taken place work out what has been oxidised and/or reduced ATOMS AND SIMPLE IONS The number of electrons which must be added or removed to become neutral atomsNa in Na= 0neutral already... no need to add any electrons cationsNa in Na + = +1need to add 1 electron to make Na + neutral anionsCl in Cl¯ = -1 need to take 1 electron away to make Cl¯ neutral

OXIDATION NUMBER Q. What are the oxidation states of the elements in the following? a) C (0)b) Fe 3+ (+3)c) Fe 2+ (+2) d) O 2- (-2) e) He (0) f) Al 3+ (+3) Q. What are the oxidation states of the elements in the following? a) C (0)b) Fe 3+ (+3)c) Fe 2+ (+2) d) O 2- (-2) e) He (0) f) Al 3+ (+3) Used to...tell if oxidation or reduction has taken place work out what has been oxidised and/or reduced ATOMS AND SIMPLE IONS The number of electrons which must be added or removed to become neutral atomsNa in Na= 0neutral already... no need to add any electrons cationsNa in Na + = +1need to add 1 electron to make Na + neutral anionsCl in Cl¯ = -1 need to take 1 electron away to make Cl¯ neutral

OXIDATION NUMBER MOLECULES The SUM of the oxidation states adds up to ZERO ELEMENTSH in H 2 = 0both are the same and must add up to Zero COMPOUNDSC in CO 2 = +4 O in CO 2 = -21 x +4 and 2 x -2 = Zero

because CO 2 is a neutral molecule, the sum of the oxidation states must be zero for this, one element must have a positive OS and the other must be negative OXIDATION NUMBER Explanation MOLECULES The SUM of the oxidation states adds up to ZERO ELEMENTSH in H 2 = 0both are the same and must add up to Zero COMPOUNDSC in CO 2 = +4 O in CO 2 = -21 x +4 and 2 x -2 = Zero

HOW DO YOU DETERMINE WHICH IS THE POSITIVE ONE? the more electronegative species will have the negative value electronegativity increases across a period and decreases down a group O is further to the right than C in the periodic table so it has the negative value OXIDATION NUMBER MOLECULES The SUM of the oxidation states adds up to ZERO ELEMENTSH in H 2 = 0both are the same and must add up to Zero COMPOUNDSC in CO 2 = +4 O in CO 2 = -21 x +4 and 2 x +2 = Zero

HOW DO YOU DETERMINE THE VALUE OF AN ELEMENT’S OXIDATION STATE? from its position in the periodic table and/or the other element(s) present in the formula OXIDATION NUMBER MOLECULES The SUM of the oxidation states adds up to ZERO ELEMENTSH in H 2 = 0both are the same and must add up to Zero COMPOUNDSC in CO 2 = +4 O in CO 2 = -21 x +4 and 2 x +2 = Zero

OXIDATION NUMBER in SO 4 2- the oxidation state of S = +6there is ONE S O = -2there are FOUR O’s (-2) = -2 so the ion has a 2- charge COMPLEX IONS The SUM of the oxidation states adds up to THE CHARGE e.g.NO 3 - sum of the oxidation states = - 1 SO 4 2- sum of the oxidation states = - 2 NH 4 + sum of the oxidation states = +1 Examples

OXIDATION NUMBER What is the oxidation state (OS) of Mn in MnO 4 ¯ ? the oxidation state of oxygen in most compounds is - 2 there are 4 O’s so the sum of its oxidation states- 8 overall charge on the ion is - 1 therefore the sum of all the oxidation states must add up to - 1 the oxidation states of Mn four O’s must therefore equal - 1 therefore the oxidation state of Mn in MnO 4 ¯is (-2) = - 1 COMPLEX IONS The SUM of the oxidation states adds up to THE CHARGE e.g.NO 3 - sum of the oxidation states = - 1 SO 4 2- sum of the oxidation states = - 2 NH 4 + sum of the oxidation states = +1 Examples

HYDROGEN +1 except 0atom (H) and molecule (H 2 ) -1hydride ion, H¯ in sodium hydride NaH OXYGEN -2 except 0atom (O) and molecule (O 2 ) -1in hydrogen peroxide, H 2 O 2 +2in F 2 O FLUORINE -1 except 0atom (F) and molecule (F 2 ) OXIDATION NUMBER CALCULATING OXIDATION NUMBER - 1 Many elements can exist in more than one oxidation state In compounds, certain elements are used as benchmarks to work out other values

HYDROGEN +1 except 0atom (H) and molecule (H 2 ) -1hydride ion, H¯ in sodium hydride NaH OXYGEN -2 except 0atom (O) and molecule (O 2 ) -1in hydrogen peroxide, H 2 O 2 +2in F 2 O FLUORINE -1 except 0atom (F) and molecule (F 2 ) OXIDATION STATES Q. Give the oxidation state of the element other than O, H or F in... SO 2 NH 3 NO 2 NH 4 + IF 7 Cl 2 O 7 NO 3 ¯NO 2 ¯SO 3 2- S 2 O 3 2- S 4 O 6 2- MnO 4 2- What is odd about the value of the oxidation state of S in S 4 O 6 2- ? Q. Give the oxidation state of the element other than O, H or F in... SO 2 NH 3 NO 2 NH 4 + IF 7 Cl 2 O 7 NO 3 ¯NO 2 ¯SO 3 2- S 2 O 3 2- S 4 O 6 2- MnO 4 2- What is odd about the value of the oxidation state of S in S 4 O 6 2- ? CALCULATING OXIDATION NUMBER - 1 Many elements can exist in more than one oxidation state In compounds, certain elements are used as benchmarks to work out other values

OXIDATION NUMBER A. The oxidation states of the elements other than O, H or F are SO 2 O = -22 x -2 = - 4overall neutralS = +4 NH 3 H = +13 x +1 = +3overall neutralN = - 3 NO 2 O = -2 2 x -2 = - 4 overall neutralN = +4 NH 4 + H = +14 x +1 = +4overall +1N = - 3 IF 7 F = -17 x -1 = - 7overall neutralI = +7 Cl 2 O 7 O = -2 7 x -2 = -14 overall neutralCl = +7 (14/2) NO 3 ¯ O = -2 3 x -2 = - 6 overall -1N = +5 NO 2 ¯ O = -2 2 x -2 = - 4 overall -1N = +3 SO 3 2- O = -2 3 x -2 = - 6 overall -2S = +4 S 2 O 3 2- O = -2 3 x -2 = - 6 overall -2S = +2 (4/2) S 4 O 6 2- O = -2 6 x -2 = -12 overall -2S = +2½ ! (10/4) MnO 4 2- O = -2 4 x -2 = - 8overall -2Mn = +6 What is odd about the value of the oxidation state of S in S 4 O 6 2- ? An oxidation state must be a whole number (+2½ is the average value)

METALS have positive values in compounds value is usually that of the Group Number Al is +3 NON-METALS mostly negative based on their usual ionCl usually -1 OXIDATION NUMBER CALCULATING OXIDATION STATE - 2 The position of an element in the periodic table can act as a guide

OXIDATION STATES CALCULATING OXIDATION STATE - 2 Q. What is the oxidation state of each element in the following compounds/ions ? CH 4 PCl 3 NCl 3 CS 2 ICl 5 BrF 3 PCl 4 + H 3 PO 4 NH 4 Cl H 2 SO 4 MgCO 3 SOCl 2

OXIDATION STATES CALCULATING OXIDATION STATE - 2 Q. What is the oxidation state of each element in the following compounds/ions ? CH 4 C = - 4H = +1 PCl 3 P = +3Cl = -1 NCl 3 N = +3Cl = -1 CS 2 C = +4S = -2 ICl 5 I = +5Cl = -1 BrF 3 Br = +3F = -1 PCl 4 + P = +4Cl = -1 H 3 PO 4 P = +5H = +1O = -2 NH 4 ClN = -3H = +1Cl = -1 H 2 SO 4 S = +6H = +1O = -2 MgCO 3 Mg = +2H = +4O = -2 SOCl 2 S = +4Cl = -1O = -2

manganese(IV) oxide shows that Mn is in the +4 oxidation state in MnO 2 sulphur(VI) oxide for SO 3 S is in the +6 oxidation state dichromate(VI) for Cr 2 O 7 2- Cr is in the +6 oxidation state phosphorus(V) chloride for PCl 5 P is in the +5 oxidation state phosphorus(III) chloride for PCl 3 P is in the +3 oxidation state OXIDATION STATES THE ROLE OF OXIDATION STATE IN NAMING SPECIES To avoid ambiguity, the oxidation state is often included in the name of a species Q. Name the following...PbO 2 SnCl 2 SbCl 3 TiCl 4 BrF 5

OXIDATION STATES Q. Name the following...PbO 2 lead(IV) oxide SnCl 2 tin(II) chloride SbCl 3 antimony(III) chloride TiCl 4 titanium(IV) chloride BrF 5 bromine(V) fluoride manganese(IV) oxide shows that Mn is in the +4 oxidation state in MnO 2 sulphur(VI) oxide for SO 3 S is in the +6 oxidation state dichromate(VI) for Cr 2 O 7 2- Cr is in the +6 oxidation state phosphorus(V) chloride for PCl 5 P is in the +5 oxidation state phosphorus(III) chloride for PCl 3 P is in the +3 oxidation state THE ROLE OF OXIDATION STATE IN NAMING SPECIES To avoid ambiguity, the oxidation state is often included in the name of a species

REDOXWhen reduction and oxidation take place OXIDATION Removal (loss) of electrons ‘OIL’ species will get less negative or more positive REDUCTIONGain of electrons ‘RIG’ species will become more negative or less positive REDOX REACTIONS OXIDATION AND REDUCTION IN TERMS OF ELECTRONS Oxidation and reduction are not only defined as changes in O and H

REDOXWhen reduction and oxidation take place OXIDATION Removal (loss) of electrons ‘OIL’ species will get less negative or more positive REDUCTIONGain of electrons ‘RIG’ species will become more negative or less positive REDUCTION in O.S. Species has been REDUCED e.g. Cl is reduced to Cl¯ (0 to -1) INCREASE in O.S. Species has been OXIDISED e.g. Na is oxidised to Na + (0 to +1) REDOX REACTIONS OXIDATION AND REDUCTION IN TERMS OF ELECTRONS Oxidation and reduction are not only defined as changes in O and H

REDUCTION in O.S. INCREASE in O.S. Species has been REDUCED Species has been OXIDISED REDOX REACTIONS OXIDATION AND REDUCTION IN TERMS OF ELECTRONS Q. State if the changes involve oxidation (O) or reduction (R) or neither (N) Fe 2+ —>Fe 3+ I 2 —>I¯ F 2 —> F 2 O

REDOX REACTIONS REDUCTION in O.S. INCREASE in O.S. Species has been REDUCED Species has been OXIDISED OXIDATION AND REDUCTION IN TERMS OF ELECTRONS Q. State if the changes involve oxidation (O) or reduction (R) or neither (N) Fe 2+ —>Fe 3+ O +2 to +3 I 2 —>I¯ R 0 to -1 F 2 —> F 2 OR 0 to -1

Mg (s) + 2HCl (aq)  MgCl 2 (aq) + H 2 (g) Redox reactions of metals with acids

Mg (s) + 2HCl (aq)  MgCl 2 (aq) + H 2 (g) Redox reactions of metals with acids We can assign oxidaton numbers to each atom in any equation in order to –  Identify whether a redox reaction has taken place  Work out what has been oxidised and what has been reduced.

Mg (s) + 2HCl (aq)  MgCl 2 (aq) + H 2 (g) Redox reactions of metals with acids The metal is oxidised, forming positive metal ions The hydrogen ion in the acid is reduced, forming the element hydrogen, as a gas We can write the above equation to show the role of the hydrogen ion, H + H + (aq)  Mg 2+ +H 2 (g) Mg (s) + 2H + (aq)  Mg 2+ +H 2 (g) We can assign oxidaton numbers to each atom in any equation in order to –  Identify whether a redox reaction has taken place  Work out what has been oxidised and what has been reduced.