AdS 4 £ CP 3 superspace Dmitri Sorokin INFN, Sezione di Padova ArXiv:0811.1566 Jaume Gomis, Linus Wulff and D.S. SQS’09, Dubna, 30 July 2009 ArXiv:0903.5407.

Slides:



Advertisements
Similar presentations
Can Integrable Cosmologies fit into Gauged Supergravity? Can Integrable Cosmologies fit into Gauged Supergravity? Pietro Frè University of Torino & Embassy.
Advertisements

Toward M5-branes from ABJM action Based on going project with Seiji Terashima (YITP, Kyoto U. ) Futoshi Yagi (YITP, Kyoto U.)
Spectroscopy of fermionic operators in AdS/CFT with flavor Ingo Kirsch Workshop „QCD and String Theory“ Ringberg Castle, Tegernsee, July 2-8, 2006 I. K.,
Type IIB Supergravity, D3 branes and ALE manifolds
Summing planar diagrams
Non-perturbative effects in string theory compactifications Sergey Alexandrov Laboratoire Charles Coulomb Université Montpellier 2 in collaboration with.
Cosmic Billiards are fully integrable: Tits Satake projections and Kac Moody extensions Talk by Pietro Frè at Corfu 2005”
String solitons in the M5-brane worldvolume with a Nambu-Poisson structure and Seiberg-Witten map Tomohisa Takimi (NTU) Ref ) Kazuyuki Furuuchi, T.T JHEP08(2009)050.
11 3d CFT and Multi M2-brane Theory on M. Ali-Akbari School of physics, IPM, Iran [JHEP 0903:148,2009] Fifth Crete regional meeting in string theory Kolymbari,
Pietro Fré Dubna July 2003 ] exp[ / Solv H
D=6 supergravity with R 2 terms Antoine Van Proeyen K.U. Leuven Dubna, 16 December 2011 collaboration with F. Coomans, E. Bergshoeff and E. Sezgin.
Gauge/Gravity Duality 2 Prof Nick Evans AdS/CFT Correspondence TODAY Quarks Deforming AdS Confinement Chiral Symmetry Breaking LATER Other brane games.
Giant Magnon and Spike Solutions in String Theories Bum-Hoon Lee Center for Quantum SpaceTime(CQUeST)/Physics Dept. Sogang University, Seoul, Korea PAQFT08,
1 Superstring vertex operators in type IIB matrix model Satoshi Nagaoka (KEK) with Yoshihisa Kitazawa (KEK & Sokendai) String Theory and Quantum Field.
3rd International Workshop On High Energy Physics In The LHC Era.
The superconformal index for N=6 Chern-Simons theory Seok Kim (Imperial College London) talk based on: arXiv: closely related works: J. Bhattacharya.
Holographic duals for 4d N =4 SYM on space-times with boundaries Ofer Aharony Weizmann Institute of Science Sixth Crete Regional Meeting on String Theory,
Happy 120 th birthday. Mimeograph Constraining Goldstinos with Constrained Superfields Nathan Seiberg IAS Confronting Challenges in Theoretical Physics.
Spin Chain in Gauge Theory and Holography Yong-Shi Wu Department of Physics, University of Utah, Center for Advanced Study, Tsinghua University, and Shanghai.
Off-shell symmetry algebra of the superstring DMITRI BYKOV Trinity College Dublin Steklov Mathematical Institute Moscow 16 Irish Quantum Field Theory meeting.
Large spin operators in string/gauge theory duality M. Kruczenski Purdue University Based on: arXiv: (L. Freyhult, A. Tirziu, M.K.) Miami 2009.
Large N c QCD Towards a Holographic Dual of David Mateos Perimeter Institute ECT, Trento, July 2004.
D-Branes and Giant Gravitons in AdS4xCP3
Spiky Strings in the SL(2) Bethe Ansatz
Planar diagrams in light-cone gauge hep-th/ M. Kruczenski Purdue University Based on:
Excited QCD 2010, February 3 (Tatra National Park, 2010) Holographic Models for Planar QCD without AdS/CFT Correspondence Sergey Afonin Ruhr-University.
Conformal higher-spin fields in (super) hyperspace Dmitri Sorokin INFN, Padova Section Based on arXiv: , with Ioannis Florakis (CERN)
Kirill Polovnikov* Anton Galajinsky* Olaf Lechtenfeld** Sergey Krivonos*** * Laboratory of Mathematical Physics, Tomsk Polytechnic University ** Institut.
Integrability in Superconformal Chern-Simons Theories Konstantin Zarembo Ecole Normale Supérieure “Symposium on Theoretical and Mathematical Physics”,
The Squashed, Stretched and Warped Gets Perturbed The Squashed, Stretched and Warped Gets Perturbed Igor Klebanov PCTS and Department of Physics Talk at.
An introduction to the Gravity/Fluid correspondence and its applications Ya-Peng Hu College of Science, Nanjing University of Aeronautics and Astronautics,
SL(2,Z) Action on AdS/BCFT and Hall conductivity Mitsutoshi Fujita Department of Physics, University of Washington Collaborators : M. Kaminski and A. Karch.
PRIN meeting - Pisa, 17/5/2013 S. Penati 1 A Survey in ABJM: Scattering Amplitudes and Wilson loops Silvia Penati University of Milano-Bicocca and INFN.
Exact Results for perturbative partition functions of theories with SU(2|4) symmetry Shinji Shimasaki (Kyoto University) JHEP1302, 148 (2013) (arXiv: [hep-th])
String solitons in the M5-brane worldvolume with a Nambu-Poisson structure and Seiberg-Witten map Tomohisa Takimi (NTU) Ref ) Kazuyuki Furuuchi, T.T JHEP08(2009)050.
Integrability of N=6 Super Chern-Simons Theories Dongsu Bak University of Seoul with S. J. Rey and D. Kang (KIAS, 9/24/2008) TexPoint fonts used in EMF.
Cosmological Backgrounds of String Theory, Solvable Algebras and Oxidation A fully algebraic machinery to generate, classify and interpret Supergravity.
Solvable Lie Algebras in Supergravity and Superstrings Pietro Fré Bonn February 2002 An algebraic characterization of superstring dualities.
Domain-wall/QFT correspondence Wen-Yu Wen Academia Sinica Feb 24, 2006 A Bridge Connecting Gravity and Gauge Theory.
LLM geometries in M-theory and probe branes inside them Jun-Bao Wu IHEP, CAS Nov. 24, 2010, KITPC.
HIGHER SPIN SUPERGRAVITY DUAL OF KAZAMA-SUZUKI MODEL Yasuaki Hikida (Keio University) Based on JHEP02(2012)109 [arXiv: [hep-th]]; arXiv:
World-sheet Scattering in AdS 5 xS 5 Konstantin Zarembo (Uppsala U.) Random Matrix Theory: Recent Applications, Copenhagen, T.Klose, T.McLoughlin,
Bethe ansatz in String Theory Konstantin Zarembo (Uppsala U.) Integrable Models and Applications, Lyon,
Minkyoo Kim (Wigner Research Centre for Physics) 9th, September, 2013 Seminar in KIAS.
Twistor description of superstrings D.V. Uvarov NSC Kharkov Institute of Physics and Technology Introduction Cartan repere variables and the string action.
2 Time Physics and Field theory
ARNOLD-BELTRAMI FLUX 2-BRANES Pietro Frè Torino University & Embassy of Italy in the Russian Federation VII Round Table November 27-th.
Takaaki Nomura(Saitama univ)
9/10/2007Isaac Newton Institute1 Relations among Supersymmetric Lattice Gauge Theories So Niels Bohr Institute based on the works arXiv:
Dmitri Sorokin, INFN Padova Section based on arXiv: with I. Bandos, L. Martucci and M. Tonin VII Round Table Italy-Russia, Dubna, November.
1 Superstring vertex operators in type IIB matrix model arXiv: [hep-th], [hep-th] Satoshi Nagaoka (KEK) with Yoshihisa Kitazawa (KEK &
Higher spin AdS 3 holography and superstring theory Yasuaki Hikida (Rikkyo University) Based on collaborations with T. Creutzig (U. of Alberta) & P. B.
Torsional heterotic geometries Katrin Becker ``14th Itzykson Meeting'' IPHT, Saclay, June 19, 2009.
The nonperturbative analyses for lower dimensional non-linear sigma models Etsuko Itou (Osaka University) 1.Introduction 2.The WRG equation for NLσM 3.Fixed.
Integrability and AdS/CFT correspondence in three dimensions Konstantin Zarembo École Normale Supérieure Paris “Sakharov Conference”, Moscow,
B.-H.L, R. Nayak, K. Panigrahi, C. Park On the giant magnon and spike solutions for strings on AdS(3) x S**3. JHEP 0806:065,2008. arXiv: J. Kluson,
P-Term Cosmology A.C. Davis (with C. Burrage) ,
Brief review of basic string theory Bosonic string Superstring three different formulations of superstring (depending on how to deal with the fermionic.
ArXiv: (hep-th) Toshiaki Fujimori (Tokyo Institute of Technology) Minoru Eto, Sven Bjarke Gudnason, Kenichi Konishi, Muneto Nitta, Keisuke Ohashi.
Bum-Hoon Lee Sogang University, Seoul, Korea D-branes in Type IIB Plane Wave Background 15th Mini-Workshop on Particle Physics May 14-15, 2006, Seoul National.
Of spinning strings in DMITRI BYKOV Trinity College Dublin Steklov Mathematical Institute Moscow Based on joint work arXiv: with L.F.ALDAY, G.ARUTYUNOV.
Can Integrable Cosmologies fit into Gauged Supergravity?
Takaaki Nomura(Saitama univ)
Type IIA string in AdS4 £ CP3 superspace
Localization and Supersymmetric Entanglement Renyi entropy
On non-Abelian T-duality for non-semisimple groups
3d CFT and Multi M2-brane Theory on
Graviton Propagators in Supergravity and Noncommutative Gauge Theory
Presentation transcript:

AdS 4 £ CP 3 superspace Dmitri Sorokin INFN, Sezione di Padova ArXiv: Jaume Gomis, Linus Wulff and D.S. SQS’09, Dubna, 30 July 2009 ArXiv: P.A.Grassi, L.Wulff and D.S.

2 AdS 4 / CFT 3 correspondence  Holographic duality between 3d supersymmetric Chern-Simons-matter theories (BLG & ABJM) and M/String Theory compactified on AdS 4 space Matter: 8 scalars  and 8 spinors  in bi-fund. rep. of U(N) k £ U(N) -k Chern—Simons gauge fields: A  and A 0  For a certain V(,) the theory has N =6 superconformal symmetry OSp(6|4) ¾ SO(6) £ Sp(4)~ SU(4) £ SO(2,3)

3 AdS 4 / CFT 3 correspondence  Holographic duality between 3d supersymmetric Chern-Simons- matter theories (BLG & ABJM) with SU(N)xSU(N) and M/String Theory compactified on AdS 4 space  In a certain limit the bulk dual description of the ABJM model is given by type IIA string theory on AdS 4 £ CP 3  this D=10 background preserves 24 of 32 susy, i.e. N =6 from the AdS 4 perspective, and its isometry is OSp(6|4)  To study this AdS/CFT duality, it is necessary to know an explicit form of the Green-Schwarz string action in the AdS 4 £ CP 3 superbackground.

4 AdS 4 £ CFT 3 correspondence  In a limit N 2 À 5/2, where =N/k is a `t Hooft coupling, the bulk description of the ABJM model is given by type IIA string theory on AdS 4 £ CP 3  this D=10 background preserves 24 of 32 susy, i.e. N =6 from the AdS 4 perspective, and its isometry is OSp(6|4) F 4 = k 1/2 d 4 x AdS 4, F 2 =k J CP 3, e 2  = 5/2 /N 2 = g 2 str  To study this AdS/CFT duality, it is necessary to know an explicit form of the Green-Schwarz string action in the AdS 4 £ CP 3 superbackground.

5 Green-Schwarz superstring in a generic supergravity background Our goal is to get the explicit form of B 2, E A and E  as polynomials of  for the AdS 4 £ CP 3 case Type IIA sugra fields g MN, , B MN, A M, A LMN,  M ,  are contained in E A and B 2

6 Fermionic kappa-symmetry Provided that the superbackground satisfies superfield supergravity constraints (or, equivalently, sugra field equations), the GS superstring action is invariant under the following local worldsheet transformations of the string coordinates Z M (  )= (X M,   ) : Due to the projector, the fermionic parameter   () has only 16 independent components. They can be used to gauge away 1/2 of 32 fermionic worldsheet fields   ()

7 AdS 4 £ CP 3 superbackground  Preserves 24 of 32 susy in type IIA D=10 superspace in contrast: AdS 5 £ S 5 background in type IIB string theory preserves all 32 supersymmetries  fermionic modes of the AdS 4 £ CP 3 superstring are of different nature:  32 ()=( 24,  8 ) unbroken broken susy 24  P 24  8  P 8  P 24 + P 8 = I 24  P 24  8  P 8  P 24 + P 8 = I P 24 = 1/8 ( 6 - a’b’ J a’b’  7 ),  7 =  1   6 a’,b’=1,…,6 - CP 3 indices, J a’b’ - Kaehler form on CP 3

8 OSp(6|4) supercoset sigma model It is natural to try to get rid of the eight “broken susy” fermionic modes  8 using kappa-symmetry  8 =0 - partial kappa-symmetry gauge fixing Remaining string modes are: 10 (AdS 4 £ CP 3 ) bosons x a () (a=0,1,2,3), y a’ () (a’=1,2,3,4,5,6) 24 fermions () corresponding to unbroken susy they parametrize coset superspace OSp(6|4)/U(3)xSO(1,3) ¾ AdS 4 xCP 3 K 10,24 (x,y,)= e x a P a e y a’ P a’ e Q 2 OSp(6|4)/U(3)xSO(1,3) [P,P]=M,[P,M]=P,P ½ AdS 4 xCP 3 M ½ SO(1,3) £ U(3) OSp(6|4) superalgebra: {Q,Q}=P+M, [Q,P]=Q,[Q,M]=Q

9 OSp(6|4) supercoset sigma model Cartan forms: K -1 dK=E a (x,y,) P a + E a’ (x,y,) P a’ + E ’ (x,y,) Q ’ +  (x,y,) M Superstring action onOSp(6|4)/U(3)xSO(1,3) – classically integrable Superstring action on OSp(6|4)/U(3)xSO(1,3) – classically integrable (Arutyunov & Frolov; Stefanskij; D'Auria, Frè, Grassi & Trigiante, 2008) S= s d 2  (- det E i A E j B  AB ) 1/2 + s E ’ Æ  E ’ J ’’ C  Reason – kappa-gauge fixing  8 P 8  = 0 is inconsistent in the AdS 4 region Reason – kappa-gauge fixing  8 = P 8  = 0 is inconsistent in the AdS 4 region [(1+  ) , P 8 ]=0 only ½ of  8 can be eliminated A problem with this model is that it does not describe all possible string configurations. E.g., it does not describe a string moving in AdS 4 only.

10 Towards the construction of the complete AdS 4 £ CP 3 superspace (with 32  )  We shall construct this superspace by performing the dimension reduction of D=11 coset superspace OSp(8|4)/SO(7) £ SO(1,3) it has 32  and subspace AdS 4 £ S 7 SO(2,3) £ SO(8) ½ OSp(8|4)  AdS 4 £ CP 3 sugra solution is related to AdS 4 £ S 7 (with 32 susy) by dimenisonal reduction ( Nilsson and Pope; D.S., Tkach & Volkov 1984 ) Geometrical ground: S 7 is the Hopf fibration over CP 3 with S 1 fiber: S 7 vielbein: e m a = e m’ a’ (y) A m’ (y) 0 1 CP 3 vielbein and U(1) connection F 2 ~dA=J CP 3 (does not depend on S 1 fiber coordinate z) Our goal is to extend this structure toOSp(8|4)/SO(7) £ SO(1,3) Our goal is to extend this structure to OSp(8|4)/SO(7) £ SO(1,3)

11 Hopf fibration of S 7 as a coset space SU(4) £ U(1) SU(3) £ U(1) As a Hopf fibration, locally, S 7 =CP 3 £ U(1) S =S =S =S =SO(8)SO(7) - symmetric space CP 3 = SU(4)/SU(3) £ U’(1) – symmetric space SU(4) £ U(1) SU(3) £ U d (1) SU(4) £ U(1) ½ SO(8) Coset representative and Cartan forms: K S 7 (y,z)=K CP 3 (y) e zT 1 =e y a’ P a’ e zT 1 (T 1 is U(1) generator) K -1 S 7 dK S 7 = e a’ (y) P a’ +  (y) M SU(3) +A(y) T 2 + dz T 1 ( T 2 ½ U ’ (1) ) = dy m’ e m’ a’ (y) P a’ +(dz+ dy m’ A m’ (y)) P 7 + (dz - A(y)) T d +  (y) M SU(3) T d =1/2 (T 1 -T 2 ) is U d (1) generator, P 7 =1/2 (T 1 +T 2 ) – translation along S 1 fiber

12 Hopf fibration of OSp(8|4)/SO(7)£SO(1,3)  K 11,32 - D=11 superspace with the bosonic subspace AdS 4 £ S 7 and 32 fermionic directions K 11,32 = M 10,32 £ S 1 (locally)  M 10,32 - D=10 superspace with the bosonic subspace AdS 4 £ CP 3 and 32 fermionic directions (it is not a coset space) M 10,32 is the superspace we are looking for! base fiber

13 1 st step: Hopf fibration over K 10,24 = OSp(6|4)/U(3)xSO(1,3)  K 11,24 = K 10,24 £ S 1 (locally) ¾ AdS 4 x S 7 SO(1,3) £ SU(3) £ U d (1) OSp(6|4) £ U(1) K 11,24 = OSp(6|4) £ U(1) ½ OSp(8|4) K 11,24 (x,y,,z)= K 10,24 (x,y,) e zT 1 = e x a P a e y a’ P a’ e  Q 24 e zT 1 K -1 dK = E a (x,y,) P a + E a’ (x,y,) P a’ + E ’ (x,y,) Q ’ +(dz+ A (x,y,) ) P 7 + (dz - A) T d +  (x,y,) M SU(3) +(dz+ A (x,y,) ) P 7 + (dz - A) T d +  (x,y,) M SU(3) Cartan forms:

14 2 nd step: adding 8 fermionic directions  8 K 11,32 (x,y,,z,) =K 11,24 (x,y,,z) e Q 8 = K 10,24 (x,y,) e zT 1 e Q 8 Q 8 are 8 susy generators which extend OSp(6|4) to OSp(8|4) OSp(6|4) superalgebra: {Q 24,Q 24 }=M SO(2,3) +M SU(4) {Q 8,Q 8 }=M SO(2,3) +T 1 OSp(2|4) superalgebra: Extension to OSp(8|4): {Q 24,Q 8 }=M ? ½ SO(8)/SU(4) £ U(1) Cartan forms of OSp(8|4)/SO(7)£SO(1,3): K -1 dK = [E a (x,y,)+dz V a ()] P a + E a’ (x,y,, ) P a’ +[dz (  )+ A (x,y,,) ] P 7 + E  (x,y,, ) Q  + E  (x,y,, ) Q  +[dz (  )+ A (x,y,,) ] P 7 + E  (x,y,, ) Q  + E  (x,y,, ) Q   + connection terms

15 3 rd step: Lorentz rotation in AdS 4 x S 1 (fiber) tangent space K -1 dK = (E a (x,y,)+dz V a ()) P a + E a’ (x,y,, ) P a’ +(dz (  )+ A (x,y,,) ) P 7 + E  (x,y,, ) Q  + E  (x,y,, ) Q  +(dz (  )+ A (x,y,,) ) P 7 + E  (x,y,, ) Q  + E  (x,y,, ) Q   + connection terms E a (x,y,,) = (E b (x,y,)+dz V b ())  b a () E a (x,y,,) = (E b (x,y,)+dz V b ())  b a () + (dz () + A(x,y,,))  7 a () + (dz () + A(x,y,,))  7 a () Lorentz transformation of the supervielbeins: S 1 : dz()+ A (x,y,,) = (dz () + A(x,y,,))  7 7 () + (E b (x,y,) + dz V b ())  b 7 () + (E b (x,y,) + dz V b ())  b 7 () E a’ (x,y,,) = E a’ (x,y,, ) E  (x,y,, ), E  (x,y,, ) – rotated 32 fermionic vielbeins M 10,32 PaPaPaPa P7P7P7P7

16 Superstring action in AdS 4 £ CP 3 superspace g ij = E i A E j B  AB – induced worldsheet metric NS-NS field B 2 is obtained by dimensional reduction of A 3 in D=11 Kappa-symmetry gauge fixing ( P.A.Grassi, L.Wulff and D.S. arXiv: ) (Killing spinor, supersolvable, or superconformal gauge, 1998) - parametrize 3d slice of AdS 4 - “chirality” condition on the AdS boundary

17 Guage fixed superstring action in AdS 4 £ CP 3 (upon a T-dualization), P.A.Grassi, L.Wulff and D.S. arXiv: =( ,   ),= 1/2(1+  0  1  2 )  =( ,   ),= 1/2(1+  0  1  2 )  The action contains fermionic terms up to a quartic order only AdS 4 CP 3  0  1  2  3

18 Conclusion  The complete AdS 4 £ CP 3 superspace with 32 fermionic directions has been constructed. Its superisometry is OSp(6|4)  The explicit form of the actions for Type IIA superstring and D- branes in AdS 4 £ CP 3 superspace have been derived  A simple gauge-fixed form of the superstring action was obtained  a light-cone gauge fixing of the superstring action has been recently considered by D. Uvarov arXiv:  These results can be used for studying various problems of String Theory in AdS 4 £ CP 3, in particular, to perform higher-loop computations (involving fermionic modes) for testing AdS 4 /CFT 3 correspondence: integrability, Bethe ansatz, S-matrix etc. in the dual planar N =6 CS-matter theory