1 PHYS 3313 – Section 001 Lecture #16 Monday, Mar. 24, 2014 Dr. Jaehoon Yu De Broglie Waves Bohr’s Quantization Conditions Electron Scattering Wave Packets.

Slides:



Advertisements
Similar presentations
The 4 important interactions of photons
Advertisements

Lecture Outline Chapter 30 Physics, 4th Edition James S. Walker
Knight - Chapter 28 (Grasshopper Book) Quantum Physics.
Ch 9 pages ; Lecture 20 – Particle and Waves.
The photon, the quantum of light
AP Physics Chapter 28 Quantum Mechanics and Atomic Physics
The de Broglie Wavelength Lesson 11. Review Remember that it has been proven that waves can occasionally act as particles. (ie: photons are particles.
Cphys351:1 Chapter 3: Wave Properties of Particles De Broglie Waves photons.
PHY 102: Quantum Physics Topic 3 De Broglie Waves.
Monday, Oct. 1, 2012PHYS , Fall 2012 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #10 Monday, Oct. 1, 2012 Dr. Jaehoon Yu Importance of Bohr’s.
Electromagnetic Radiation
Physics 334 Modern Physics Credits: Material for this PowerPoint was adopted from Rick Trebino’s lectures from Georgia Tech which were based on the textbook.
Pre-IB/Pre-AP CHEMISTRY
Quantum Theory of Light A TimeLine. Light as an EM Wave.
1.X-Ray Scattering 2.De Broglie Waves 3.Electron Scattering 4.Wave Motion 5.Waves or Particles? 6.Uncertainty Principle 7.Probability, Wave Functions,
1 5.1X-Ray Scattering 5.2De Broglie Waves 5.3Electron Scattering 5.4Wave Motion 5.5Waves or Particles? 5.6Uncertainty Principle 5.7Probability, Wave Functions,
P2-13: ELECTRON DIFFRACTION P3-51: BALMER SERIES P2-15: WAVE PACKETS – OSCILLATORS P2-12: X-RAY DIFFRACTION MODEL P2-11: INTERFERENCE OF PHOTONS Lecture.
The Photoelectric Effect
Classical ConceptsEquations Newton’s Law Kinetic Energy Momentum Momentum and Energy Speed of light Velocity of a wave Angular Frequency Einstein’s Mass-Energy.
Modern Physics lecture 3. Louis de Broglie
PHYS 3313 – Section 001 Lecture #17
Physics 361 Principles of Modern Physics Lecture 5.
Wave Nature of Matter Light/photons have both wave & particle behaviors. Waves – diffraction & interference, Polarization. Acts like Particles – photoelectric.
1 Introduction to quantum mechanics (Chap.2) Quantum theory for semiconductors (Chap. 3) Allowed and forbidden energy bands (Chap. 3.1) What Is An Energy.
The total energy of matter related to the frequency ν of the wave is E=hν the momentum of matter related to the wavelength λ of the wave is p=h/λ 3.1 Matter.
1 My Chapter 28 Lecture. 2 Chapter 28: Quantum Physics Wave-Particle Duality Matter Waves The Electron Microscope The Heisenberg Uncertainty Principle.
Physics 1C Lecture 28B Compton effect: photons behave like particles when colliding with electrons. Electrons and particles in general can behave like.
Chapter 29 Particles and Waves.
Physics Lecture 8 2/18/ Andrew Brandt Wednesday February 18, 2009 Dr. Andrew Brandt 1.Phase Velocity and Group Velocity 2.Particle in.
Physics Lecture 9 2/17/ Andrew Brandt Wednesday February 17, 2010 Dr. Andrew Brandt 1.HW4 on ch 5 will be assigned Friday 2/19 and due.
Wave-Particle Duality - the Principle of Complementarity The principle of complementarity states that both the wave and particle aspects of light are fundamental.
Physics 2170 – Spring Davisson – Germer experiment Homework set 7 is due Wednesday. Problem solving sessions.
DUALITY PARTICLE WAVE PARTICLE DUALITY WAVE © John Parkinson.
CHE-20028: PHYSICAL & INORGANIC CHEMISTRY QUANTUM CHEMISTRY: LECTURE 2 Dr Rob Jackson Office: LJ 1.16
Monday, Oct. 7, 2013PHYS , Fall 2013 Dr. Amir Farbin 1 PHYS 3313 – Section 001 Lecture #12 Monday, Oct. 7, 2013 Dr. Amir Farbin Wave Motion & Properties.
The Quantum Model of the Atom Section 4.2. Bohr’s Problems Why did hydrogen’s electron exist around the nucleus only in certain allowed orbits? Why couldn’t.
1 PHYS 3313 – Section 001 Lecture #15 Monday, Mar. 17, 2014 Dr. Jaehoon Yu Atomic Excitation by Electrons X-ray Scattering Bragg’s Law De Broglie Waves.
To Address These Questions, We Will Study:
Monday, March 30, 2015PHYS , Spring 2015 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #15 Monday, March 30, 2015 Dr. Jaehoon Yu Wave Motion.
PHYS 3313 – Section 001 Lecture #11
PHYS 3313 – Section 001 Lecture #18
Wednesday, Oct. 2, 2013PHYS , Fall 2012 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #11 Wednesday, Oct. 2, 2013 Dr. Amir Farbin Importance.
Monday, March 16, 2015PHYS , Spring 2014 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #12 Monday, March 16, 2015 Dr. Jaehoon Yu Rutherford.
Physics Lecture 10 2/22/ Andrew Brandt Monday February 22, 2010 Dr. Andrew Brandt 1.HW4 on ch 5 is due Monday 3/1 2.HW5 on ch 6 will be.
Modern Physics lecture X. Louis de Broglie
Nature of a wave  A wave is described by frequency, wavelength, phase velocity u and intensity I  A wave is spread out and occupies a relatively large.
Topic I: Quantum theory Chapter 7 Introduction to Quantum Theory.
Light, Quantitized Energy & Quantum Theory CVHS Chemistry Ch 5.1 & 5.2.
CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I
4.1X-Ray Scattering 4.2De Broglie Waves 4.3Electron Scattering 4.4Wave Motion 4.6Uncertainty Principle 4.8Particle in a Box 4.7Probability, Wave Functions,
PHYS 3313 – Section 001 Lecture #16
Quantum Mechanics and Atomic Physics
Physics 4 – April 27, 2017 P3 Challenge –
Matter Waves and Uncertainty Principle
CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I
5. Wave-Particle Duality - the Principle of Complementarity
Uncertainty Principle
PHYS 3313 – Section 001 Lecture #16
Chapter 6 Electronic Structure of Atoms
CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I
Satish Pradhan Dnyanasadhana college, Thane
PHYS 3313 – Section 001 Lecture #17
Light and Energy Electromagnetic Radiation is a form of energy that is created through the interaction of electrical and magnetic fields. It displays wave-like.
5. Wave-Particle Duality - the Principle of Complementarity
Wave Nature of Matter Just as light sometimes behaves as a particle, matter sometimes behaves like a wave. The wavelength of a particle of matter is: This.
The Wave-Particle Duality
To Address These Questions, We Will Study:
CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I
Something more about…. Standing Waves Wave Function
PHYS 3313 – Section 001 Lecture #17
Presentation transcript:

1 PHYS 3313 – Section 001 Lecture #16 Monday, Mar. 24, 2014 Dr. Jaehoon Yu De Broglie Waves Bohr’s Quantization Conditions Electron Scattering Wave Packets and Packet Envelops Superposition of Waves Electron Double Slit Experiment Wave-Particle Duality Monday, Mar. 24, 2014PHYS , Spring 2014 Dr. Jaehoon Yu

Monday, Mar. 24, 2014PHYS , Spring 2014 Dr. Jaehoon Yu 2 Announcements Research paper template has been uploaded onto the class web page link to research Special colloquium on April 2, triple extra credit Colloquium this Wednesday at 4pm in SH101

De Broglie Waves Prince Louis V. de Broglie suggested that mass particles should have wave properties similar to electromagnetic radiation  many experiments supported this! Thus the wavelength of a matter wave is called the de Broglie wavelength: This can be considered as the probing beam length scale Since for a photon, E = pc and E = hf, the energy can be written as Monday, Mar. 24, PHYS , Spring 2014 Dr. Jaehoon Yu

What is the formula for De Broglie Wavelength? (a) for a tennis ball, m=0.057kg. (b) for electron with 50eV KE, since KE is small, we can use non-relativistic expression of electron momentum! What are the wavelengths of you running at the speed of 2m/s? What about your car of 2 metric tons at 100mph? How about the proton with 14TeV kinetic energy? What is the momentum of the photon from a green laser? Calculate the De Broglie wavelength of (a) a tennis ball of mass 57g traveling 25m/s (about 56mph) and (b) an electron with kinetic energy 50eV. Ex 5.2: De Broglie Wavelength Monday, Mar. 24, PHYS , Spring 2014 Dr. Jaehoon Yu

Bohr’s Quantization Condition One of Bohr’s assumptions concerning his hydrogen atom model was that the angular momentum of the electron-nucleus system in a stationary state is an integral multiple of h /2 π. The electron is a standing wave in an orbit around the proton. This standing wave will have nodes and be an integral number of wavelengths. The angular momentum becomes: Monday, Mar. 24, PHYS , Spring 2014 Dr. Jaehoon Yu

Electron Scattering Davisson and Germer experimentally observed that electrons were diffracted much like x rays in nickel crystals.  direct proof of De Broglie wave! George P. Thomson (1892–1975), son of J. Thomson, reported seeing the effects of electron diffraction in transmission experiments. The first target was celluloid, and soon after that gold, aluminum, and platinum were used. The randomly oriented polycrystalline sample of SnO 2 produces rings as shown in the figure at right. Monday, Mar. 24, PHYS , Spring 2014 Dr. Jaehoon Yu

Photons, which we thought were waves, act particle like (eg Photoelectric effect or Compton Scattering) Electrons, which we thought were particles, act particle like (eg electron scattering) De Broglie: All matter has intrinsic wavelength. –Wave length inversely proportional to momentum –The more massive… the smaller the wavelength… the harder to observe the wavelike properties –So while photons appear mostly wavelike, electrons (next lightest particle!) appear mostly particle like. How can we reconcile the wave/particle views? Monday, Mar. 24, 2014PHYS , Spring 2014 Dr. Jaehoon Yu 7

De Broglie matter waves suggest a further description. The displacement of a wave is This is a solution to the wave equation Define the wave number k and the angular frequency  as: The wave function is now: Wave Motion Monday, Mar. 24, PHYS , Spring 2014 Dr. Jaehoon Yu

Wave Properties The phase velocity is the velocity of a point on the wave that has a given phase (for example, the crest) and is given by A phase constant  shifts the wave:. Monday, Mar. 24, PHYS , Spring 2014 Dr. Jaehoon Yu (When  =  /2)

Principle of Superposition When two or more waves traverse the same region, they act independently of each other. Combining two waves yields: The combined wave oscillates within an envelope that denotes the maximum displacement of the combined waves. When combining many waves with different amplitudes and frequencies, a pulse, or wave packet, can be formed, which can move at a group velocity : Monday, Mar. 24, PHYS , Spring 2014 Dr. Jaehoon Yu

Fourier Series Adding 2 waves isn’t localized in space… but adding lots of waves can be. The sum of many waves that form a wave packet is called a Fourier series : Summing an infinite number of waves yields the Fourier integral: Monday, Mar. 24, PHYS , Spring 2014 Dr. Jaehoon Yu

Wave Packet Envelope The superposition of two waves yields a wave number and angular frequency of the wave packet envelope. The range of wave numbers and angular frequencies that produce the wave packet have the following relations: A Gaussian wave packet has similar relations: The localization of the wave packet over a small region to describe a particle requires a large range of wave numbers. Conversely, a small range of wave numbers cannot produce a wave packet localized within a small distance. Monday, Mar. 24, PHYS , Spring 2014 Dr. Jaehoon Yu

A Gaussian wave packet describes the envelope of a pulse wave. The group velocity is Gaussian Function Monday, Mar. 24, PHYS , Spring 2014 Dr. Jaehoon Yu

Dispersion Considering the group velocity of a de Broglie wave packet yields: The relationship between the phase velocity and the group velocity is Hence the group velocity may be greater or less than the phase velocity. A medium is called nondispersive when the phase velocity is the same for all frequencies and equal to the group velocity. Monday, Mar. 24, PHYS , Spring 2014 Dr. Jaehoon Yu

Waves or Particles? Young’s double-slit diffraction experiment demonstrates the wave property of light. However, dimming the light results in single flashes on the screen representative of particles. Monday, Mar. 24, PHYS , Spring 2014 Dr. Jaehoon Yu

Electron Double-Slit Experiment C. Jönsson of Tübingen, Germany, succeeded in 1961 in showing double-slit interference effects for electrons by constructing very narrow slits and using relatively large distances between the slits and the observation screen. This experiment demonstrated that precisely the same behavior occurs for both light (waves) and electrons (particles). Monday, Mar. 24, PHYS , Spring 2014 Dr. Jaehoon Yu

Which slit? To determine which slit the electron went through: We set up a light shining on the double slit and use a powerful microscope to look at the region. After the electron passes through one of the slits, light bounces off the electron; we observe the reflected light, so we know which slit the electron came through. Use a subscript “ph” to denote variables for light (photon). Therefore the momentum of the photon is The momentum of the electrons will be on the order of. The difficulty is that the momentum of the photons used to determine which slit the electron went through is sufficiently great to strongly modify the momentum of the electron itself, thus changing the direction of the electron! The attempt to identify which slit the electron is passing through will in itself change the interference pattern. Monday, Mar. 24, PHYS , Spring 2014 Dr. Jaehoon Yu

Wave particle duality solution The solution to the wave particle duality of an event is given by the following principle. Bohr’s principle of complementarity : It is not possible to describe physical observables simultaneously in terms of both particles and waves. Physical observables are the quantities such as position, velocity, momentum, and energy that can be experimentally measured. In any given instance we must use either the particle description or the wave description. Monday, Mar. 24, PHYS , Spring 2014 Dr. Jaehoon Yu

Uncertainty Principle It is impossible to measure simultaneously, with no uncertainty, the precise values of k and x for the same particle. The wave number k may be rewritten as For the case of a Gaussian wave packet we have Thus for a single particle we have Heisenberg’s uncertainty principle : Monday, Mar. 24, PHYS , Spring 2014 Dr. Jaehoon Yu

Energy Uncertainty If we are uncertain as to the exact position of a particle, for example an electron somewhere inside an atom, the particle can’t have zero kinetic energy. The energy uncertainty of a Gaussian wave packet is combined with the angular frequency relation Energy-Time Uncertainty Principle:. Monday, Mar. 24, PHYS , Spring 2014 Dr. Jaehoon Yu

Probability, Wave Functions, and the Copenhagen Interpretation The wave function determines the likelihood (or probability) of finding a particle at a particular position in space at a given time. The total probability of finding the electron is 1. Forcing this condition on the wave function is called normalization. Monday, Mar. 24, PHYS , Spring 2014 Dr. Jaehoon Yu

The Copenhagen Interpretation Bohr’s interpretation of the wave function consisted of 3 principles: The uncertainty principle of Heisenberg The complementarity principle of Bohr The statistical interpretation of Born, based on probabilities determined by the wave function Together these three concepts form a logical interpretation of the physical meaning of quantum theory. According to the Copenhagen interpretation, physics depends on the outcomes of measurement. Monday, Mar. 24, PHYS , Spring 2014 Dr. Jaehoon Yu

Particle in a Box A particle of mass m is trapped in a one-dimensional box of width l.l. The particle is treated as a wave. The box puts boundary conditions on the wave. The wave function must be zero at the walls of the box and on the outside. In order for the probability to vanish at the walls, we must have an integral number of half wavelengths in the box. The energy of the particle is. The possible wavelengths are quantized which yields the energy: The possible energies of the particle are quantized. Monday, Mar. 24, PHYS , Spring 2014 Dr. Jaehoon Yu