Detecting Cool Dust in SNRs in LMC and SMC with ALMA Takaya Nozawa (Kavli IPMU) and Masaomi Tanaka (NAOJ) 2012/6/11 Targets ・ SN 1987A: our proposal for.

Slides:



Advertisements
Similar presentations
Non-steady-state dust formation in the ejecta of Type Ia supernovae 2013/08/06 Takaya Nozawa (Kavli IPMU, University of Tokyo) Collaborators: Takashi Kozasa.
Advertisements

Supernova Remnants Shell-type versus Crab-like Phases of shell-type SNR.
Multi-wavelength Observations of Composite Supernova Remnants Collaborators: Patrick Slane (CfA) Eli Dwek (GSFC) George Sonneborn (GSFC) Richard Arendt.
European Space Astronomy Centre (ESAC) May 23, 2013.
X-ray Properties of Five Galactic SNRs arXiv: Thomas G. Pannuti et al.
SUPERNOVA REMNANTS IN THE MAGELLANIC CLOUDS JOHN R. DICKEL UNIVERSITY OF NEW MEXICO AND ROSA MURPHY WILLIAMS COLUMBUS STATE UNIVERSITY Preliminary SNR.
Supernova Remnants in the ChASeM33 X-ray Survey of M33 Knox S. Long, William P. Blair, P. Frank Winkler, and the ChASeM33 team.
Herschel study of the dust content of Cassiopeia A Ref: arxiv: v1 Oliver Krause PPT.
SN 1987A the excitement continues Bruno Leibundgut ESO.
Supernova Remnants in the ChASeM33 X-ray Observations of M33 Knox Long, Bill Blair, Frank Winkler, Terry Gaetz, David Helfand, Jack Hughes, Kip Kuntz,
Millimeter Spectroscopy Joanna Brown. Why millimeter wavelengths? >1000 interstellar & circumstellar molecular lines Useful for objects at all different.
IR Shell Surrounding the Pulsar Wind Nebula G SNRs and PWNe in the Chandra Era Boston, July 8, 2009 Tea Temim (CfA, Univ. of MN) Collaborators:
Star Formation Research Now & With ALMA Debra Shepherd National Radio Astronomy Observatory ALMA Specifications: Today’s (sub)millimeter interferometers.
The Impact of Dust on a Stellar Wind-Blown Bubbles Ed Churchwell & John Everett University of Wisconsin Oct , 2008Lowell Observatory Flagstaff, AZ.
TURBULENCE AND HEATING OF MOLECULAR CLOUDS IN THE GALACTIC CENTER: Natalie Butterfield (UIowa) Cornelia Lang (UIowa) Betsy Mills (NRAO) Dominic Ludovici.
Multiwavelength Continuum Survey of Protostellar Disks in Ophiuchus Left: Submillimeter Array (SMA) aperture synthesis images of 870 μm (350 GHz) continuum.
Dust emission in SNR 1987A and high-z dust observations Takaya Nozawa (Kavli IPMU) 2013/10/24 〇 Contents of this talk - Introduction - Our ALMA proposals.
Composition and Origin of Dust Probed by IR Spectra of SNRs ( 超新星残骸の赤外分光観測から探るダストの組成と起源 ) Takaya Nozawa IPMU (Institute for the Physics and Mathematics.
Current understandings on dust formation in supernovae Takaya Nozawa (NAOJ, Division of theoretical astronomy) 2014/06/25 Main collaborators: Masaomi Tanaka.
I. Origin of the dust emission from Tycho’s SNR II. Mapping observations of [Fe II] lines and dust emission of IC443 by IRSF & AKARI III. Summary AKARI.
Dust Formation in Various Types of Supernovae Takaya Nozawa (IPMU, University of Tokyo) T. Kozasa (Hokkaido Univ.) K. Nomoto (IPMU) K. Maeda (IPMU) H.
Cas A 超新星残骸中の ダストの進化と熱放射 野沢 貴也 東京大学数物連携宇宙研究機構(IPMU) 共同研究者 小笹 隆司 ( 北大 ), 冨永望 ( 国立天文台 ), 前田啓一 (IPMU), 梅田秀之 ( 東大 ), 野本憲一 (IPMU/ 東大 )
ASIAA Interferometry Summer School – 2006 Introduction – Radio Astronomy Tatsuhiko Hasegawa (ASIAA) 1. Atmospheric window to the electromagnetic waves.
Lecture 30: The Milky Way. topics: structure of our Galaxy structure of our Galaxy components of our Galaxy (stars and gas) components of our Galaxy (stars.
Elizabeth Stanway - Obergurgl, December 2009 Lyman Break Galaxies as Markers for Large Scale Structure at z=5 Elizabeth Stanway University of Bristol With.
Molecular gas and dust in the Magellanic Clouds C. Bot on behalf of Mónica Rubio Dusty, 29 oct 2004.
Formation of Dust in Various Types of Supernovae Takaya Nozawa IPMU (Institute for the Physics and Mathematics of the Universe, Univ. of Tokyo) Collaborators.
Detecting Cool Dust in Type Ia Supernova Remnant (ranked as priority grade B for ALMA Cycle2) Takaya Nozawa (NAOJ, 理論研究部 ) and Masaomi Tanaka.
Dust production in a variety of types of supernovae Takaya Nozawa (NAOJ, Division of theoretical astronomy) 2014/08/07 Main collaborators: Keiichi Maeda.
Revealing the mass of dust formed in the ejecta of SNe with ALMA ALMA で探る超新星爆発時におけるダスト形成量 Takaya Nozawa (IPMU, University of Tokyo) 2011/1/31 Collaborators;
Nature of Dust in the early universe Takaya Nozawa IPMU (Institute for the Physics and Mathematics of the Universe, Univ. of Tokyo) Collaborators T. Kozasa,
Early O-Type Stars in the W51-IRS2 Cluster A template to study the most massive (proto)stars Luis Zapata Max Planck Institut für Radioastronomie, GERMANY.
Formation of Dust in Supernovae and Its Ejection into the ISM Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N. Tominaga.
Probing Dust Formation Process in SN 1987A with ALMA Takaya Nozawa (Kavli IPMU) and Masaomi Tanaka (NAOJ) 2013/10/22.
Evolution of Newly Formed Dust in Population III Supernova Remnants and Its Impact on the Elemental Composition of Population II.5 Stars Takaya Nozawa.
Searching for disks around high-mass (proto)stars with ALMA R. Cesaroni, H. Zinnecker, M.T. Beltrán, S. Etoka, D. Galli, C. Hummel, N. Kumar, L. Moscadelli,
1 Radio – FIR Spectral Energy Distribution of Young Starbursts Hiroyuki Hirashita 1 and L. K. Hunt 2 ( 1 University of Tsukuba, Japan; 2 Firenze, Italy)
Formation and evolution of dust in Type IIb SN: Application to Cas A Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N.
Physical Conditions of Supernova Ejecta Probed with the Sizes of Presolar Al 2 O 3 Grains - 超新星起源プレソーラー Al 2 O 3 粒子の形成環境 - (Nozawa, Wakita, Hasegawa, Kozasa,
Neutral Atomic Hydrogen Gas at Forbidden Velocities in the Galactic Plane Ji-hyun Kang NAIC Seoul National University Supervisor :Bon-Chul Koo 213 th AAS.
Cosmic Dust Enrichment and Dust Properties Investigated by ALMA Hiroyuki Hirashita ( 平下 博之 ) (ASIAA, Taiwan)
Evolution of dust size distribution and extinction curves in galaxies Takaya Nozawa (National Astronomical Observatory of Japan) 2014/05/21 C ollaborators:
American Astronomical Society – Austin, TX (2008) Patrick Slane (CfA) In collaboration with: D. Helfand (Columbia) S. Reynolds (NC State) B. Gaensler (U.
Formation and evolution of dust in hydrogen-poor supernovae Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N. Tominaga.
ALMA Cycle 0 Observation of Orion Radio Source I Tomoya Hirota (Mizusawa VLBI observatory, NAOJ) Mikyoung Kim (KVN,KASI) Yasutaka Kurono (ALMA,NAOJ) Mareki.
Supply of dust from supernovae: Theory vs. Observation (超新星爆発によるダストの供給: 理論 vs. 観 測) Takaya Nozawa (IPMU, University of Tokyo) 2011/07/20 Collaborators:
ALMA observations of Molecules in Supernova 1987A
SN 1987A: The Formation & Evolution of Dust in a Supernova Explosion
Mid-infrared Observations of Aged Dusty Supernovae
Consensus and issues on dust formation in supernovae
IIb型超新星爆発時のダスト形成と その放出過程
Formation of Dust in the Ejecta of Type Ia Supernovae
東京大学数物連携宇宙研究機構(IPMU)
2010/12/16 Properties of interstellar and circumstellar dust as probed by mid-IR spectroscopy of supernova remnants (超新星残骸の中間赤外分光から探る星間・星周ダスト) Takaya.
Supernovae as sources of interstellar dust
Dust in supernovae Takaya Nozawa
ダスト形成から探る超新星爆発 Supernovae probed by dust formation
Dust Synthesis in Supernovae and Reprocessing in Supernova Remnants
Supernovae as sources of dust in the early universe
On the non-steady-state nucleation rate
Formation of Dust in the Ejecta of Type Ia Supernovae
Approach to Nucleation in Astronomical Environments
Dust Enrichment by Supernova Explosions
Missing-Dust Problem in SNe: Approach from extremely young SNRs
Takaya Nozawa (IPMU, University of Tokyo)
Supernovae as Sources of Interstellar Dust
Formation of dust and molecules in supernovae
Formation and evolution of dust in hydrogen-poor supernovae
(National Astronomical Observatory of Japan)
Presentation transcript:

Detecting Cool Dust in SNRs in LMC and SMC with ALMA Takaya Nozawa (Kavli IPMU) and Masaomi Tanaka (NAOJ) 2012/6/11 Targets ・ SN 1987A: our proposal for ALMA Cycle 0 and next plan for ALMA Cycle 1 ・ 1E : youngest SNR in SMC

1. SNRs at submm and millimeter wavelengths ・ molecular lines and synchrotron emission from interaction regions between molecular clouds and SN blast waves ・ synchrotron emission from pulsar wind nebulae ・ thermal emission from cool dust which was formed in the expanding ejecta of SNe ➔ cool dust dominates the dust mass ➔ discovery of a huge amount of dust at z > 5 SNe are important sources of interstellar dust?

2. Summary of dust mass in core-collapse SNe theory missing cold dust? cool dust in SN1987A Far-IR to sub-mm observations are essential for revealing the mass of dust grains produced in the ejecta of SNe young SNe young SNRs swept-up IS dust?

3. Herschel detects cool dust in SN 1987A Matsuura et al Herschel detects cool (~20K) dust of ~ M sun toward SN 1987A!

4. Resolving cool dust in SN 1987A with ALMA Band 9 (450 μm)Band 7 (850 μm) 0.1 M sun of silicate ➔ 5σ detection at Band 9 !! 2 arcsec ALMA Cycle 0 Proposal ‘Detecting cool dust in SN1987A’ ( TN, Tanaka, et al.) CASA simulation with extended config. (4 hrs)

5. Constraining mass of cool dust in SN 1987A Lakicevic+12, A&A, 541, L1 3 mm Lakicevic+12, A&A, 541, L2 Herschel results had not yet opened at that time … If detected with 2.7 mJy, more than 0.06 M sun of grains exist !!

This proposal was ranked in the highest priority, to be observed this fall !! 6. Successful ALMA proposals for SN 1987A Band 9 extended configuration Band 3, 6, 7, 9 compact configuration

7. Condition of atmosphere LMC From ALMA Cycle 1 proposer’s guide midnight day time BandBand 3Band 6Band 7Band 9 Fraction100%70%40%10%

8. 12m-array configurations for ALMA Cycle1 Cycle0 proposal (extended, Band 9) Ang Res : 0.23” Max Res : 1.5” compactextended Cycle1 proposal ・ Band 6, 7, and 9 ・ C32-5 or C32-6 or mixed confguration?

Barlow+10, A&A, 518, L Possible target: SNR 1E0102, a twin of Cas A Stanimirovic μm ・ Cassiopeia A - Type IIb - age : 330 yr - M warm < M sun - M cool ~ 0.07 M sun Cas A model (Nozawa+10) ・ SNR 1E0102 - O-rich (Type Ib?) - age : ~1000 yr - M warm ~ M sun - M cool ~ ??? 24 μm Gaetz μm X-ray, radio

10. IR observations of SNR 1E0102 ・ cool dust mass - M cool < 0.6 M sun with T dust = K (Sandstrom+09) Spitzer; Stanimirovic μm 70 μm Sandstrom+09, ApJ, 696, 2138 ・ SNR 1E0102 in SMC - age : ~1000 yr youngest CCSNe - diameter : ~40” (= kpc) - similar to Cas A ・ hot dust mass - M warm = 8x10 -4 M sun (Stanimirovic+05) - M warm = M sun (Rho+09) M warm = 3x10 -3 M sun

11. Comparison with SED of SN 1987A IR SED of SN 1987AIR SED of SNR 1E0102 IR-to-radio SEDs of SN 1987A and 1E0102 are similar But.. Cycle 1 1 sigma, 1 hr

12. SNR 1E0102 is too extended! 40 arcsec SN 1987A

13. Array & ACA combinations ・ Use of ACA requires 3 times more times ・ Atmospheric correction is not available on ACA ・ Total Power (TP) is not available for continuum

14. What is the best strategy for SNR 1E0102? 40 arcsec SN 1987A Band 9 with ACA Band 3 with ACA Band 3

15. Flux estimates necessary for detection 1987A Band 9 1E0102 Band 9 full operation 1 sigma, 1 hr effective flux (flux per beam)

16. Summary Detecting cool dust in SNRs with ALMA ・ SN 1987A (radius: 0.5 arcsec) - Spatially resolved images in Band 6, 7, and 9 - Possibility of detecting molecular lines? ・ 1E (radius: 20 arcsec) - too large and too faint (almost impossible) ➔ it seems too hard to detect continuum emission from cool dust in any other SNRs..

A-1. How dense is cool dust in 1E0102? ・ 1E R = 15 arcsec ➔ 1.3x10 19 cm = kpc what is the mass of dust if ISM dust is included in the sphere with this radius? M dust ~ (4πR 3 / 3) D (n H m H ) = M sun (D / 0.01) (n H / 1 cm -3 ) ・ Cassiopeia A R = 100 arcsec ➔ 4.8x10 18 cm = kpc

A-2. Importance of molecular lines in SN 1987A ・ CO and SiO molecules were detected around 300 days after explosion in SN 1987A (CO and SiO were confirmed in many dust-forming SNe) ・ Measuring the expansion velocity of the ejecta ・ CO molecule has been detected in Cas A SNR ・ All condensible metals have to be tied up in dust grains to explain M sun of dust in SN 1987A ➔ CO and SiO molecules can survive?? ・ How much CO and SiO line fluxes can contribute the continuum flux? ➔ expected mass of CO and SiO: ~10 -3 M sun

A-3. Summary of molecular lines ・ CO molecule ν=0, 1-0: GHz (B3) ν=0, 2-1: GHz (B6) ν=0, 3-2: GHz (B7) ν=0, 4-3: GHz ν=0, 5-4: GHz ν=0, 6-5: GHz (B9) ・ SiO molecule ν=0, 2-1: GHz (B3) ν=0, 3-2: GHz ν=0, 4-3: GHz ν=0, 5-4: GHz (B6) ν=0, 6-5: GHz (B6) ν=0, 7-6: GHz (B7) ν=0, 8-7: GHz (B7) ν=0, 15-14: GHz (B9) ν=0, 16-15: GHz (B9) Band 3: GHz Band 6: GHz Band 7: GHz Band 9: GHz