TLS MODELLING OF ANISOTROPY IN MACROMOLECULAR REFINEMENT Martyn Winn CCP4, Daresbury Laboratory, U.K. York, April 11th 2002.

Slides:



Advertisements
Similar presentations
Crystallography, Birkbeck MOLECULAR SIMULATIONS ALL YOU (N)EVER WANTED TO KNOW Julia M. Goodfellow Dynamic Processes: Lecture 1 Lecture Notes.
Advertisements

Macromolecular refinement with REFMAC5 and SKETCHER of the CCP4 suite Roberto A. Steiner – University of York.
TLS REFINEMENT WITH REFMAC5 Martyn Winn CCP4, Daresbury Laboratory, U.K. Bangalore, February 2008.
Beams and Frames.
Disorder.
Effects of TLS parameters in Macromolecular Refinement Martyn Winn Daresbury Laboratory, U.K. IUCr99 08/08/99.
Refinement Garib N Murshudov MRC-LMB Cambridge 1.
CCP4 workshop: Diamond – 2014 ___________________________________________ Refinement Garib N Murshudov MRC-LMB Cambridge 1.
Structure Outline Solve Structure Refine Structure and add all atoms
Refinement of Macromolecular structures using REFMAC5 Garib N Murshudov York Structural Laboratory Chemistry Department University of York.
Ch. 2: Rigid Body Motions and Homogeneous Transforms
Macromolecular structure refinement Garib N Murshudov York Structural Biology Laboratory Chemistry Department University of York.
PATTERN RECOGNITION : PRINCIPAL COMPONENTS ANALYSIS Prof.Dr.Cevdet Demir
Symmetry is the concept of repetitive arrangements of similar objects in space. In three dimensions, objects may be arranged in a large number of ways.
Refinement with REFMAC
Vibrational and Rotational Spectroscopy
ExTASY 0.1 Beta Testing 1 st April 2015
28 Mar 06Automation1 Overview of developments within CCP4 Generation 1 ccp4i tasks Generation 2 isolated scripts / web service Generation 3 integrated.
1 CE 530 Molecular Simulation Lecture 17 Beyond Atoms: Simulating Molecules David A. Kofke Department of Chemical Engineering SUNY Buffalo
BALBES (Current working name) A. Vagin, F. Long, J. Foadi, A. Lebedev G. Murshudov Chemistry Department, University of York.
Data quality and model parameterisation Martyn Winn CCP4, Daresbury Laboratory, U.K. Prague, April 2009.
Coot Tools for Model Building and Validation
REFMAC5 Roberto A. Steiner IFOM Istituto FIRC di Oncologia Molecolare Milan, Italy.
© 2011 Autodesk Freely licensed for use by educational institutions. Reuse and changes require a note indicating that content has been modified from the.
Computer Simulation of Biomolecules and the Interpretation of NMR Measurements generates ensemble of molecular configurations all atomic quantities Problems.
Bulk Model Construction and Molecular Replacement in CCP4 Automation Ronan Keegan, Norman Stein, Martyn Winn.
Conformational Space.  Conformation of a molecule: specification of the relative positions of all atoms in 3D-space,  Typical parameterizations:  List.
A Technical Introduction to the MD-OPEP Simulation Tools
TLS REFINEMENT WITH REFMAC5 Martyn Winn CCP4, Daresbury Laboratory, U.K. Florence, August 23rd 2005.
EBI is an Outstation of the European Molecular Biology Laboratory. Quaternary Structure.
Data Harvesting: automatic extraction of information necessary for the deposition of structures from protein crystallography Martyn Winn CCP4, Daresbury.
Statistical Mechanics of Proteins
The Spinning Top Chloe Elliott. Rigid Bodies Six degrees of freedom:  3 cartesian coordinates specifying position of centre of mass  3 angles specifying.
Direct Use of Phase Information in Refmac Abingdon, University of Leiden P. Skubák.
PATTERN RECOGNITION : PRINCIPAL COMPONENTS ANALYSIS Richard Brereton
Refinement of Macromolecular structures using REFMAC5 Garib N Murshudov York Structural Laboratory Chemistry Department University of York.
TLS REFINEMENT Theory, background and application Martyn Winn CCP4, Daresbury Laboratory, U.K. Prague, April 2009.
CCP4 Version The most recent version of the CCP4 suite is 4.1, which was released at the end of January 2001, with a minor patch release shortly.
Automated Refinement (distinct from manual building) Two TERMS: E total = E data ( w data ) + E stereochemistry E data describes the difference between.
PUMPKIN Ideas. Objectives Development and application of methods to:  Model the dynamics of domain motion in large proteins  Incorporate experimental.
A Computational Study of RNA Structure and Dynamics Rhiannon Jacobs and Harish Vashisth Department of Chemical Engineering, University of New Hampshire,
Structural Biology Laboratory
Yinghao Wu, Barry Honig, Avinoam Ben-Shaul  Biophysical Journal 
Jing Han, Kristyna Pluhackova, Tsjerk A. Wassenaar, Rainer A. Böckmann 
SH3-SH2 Domain Orientation in Src Kinases
Kei-ichi Okazaki, Shoji Takada  Structure 
Transconformations of the SERCA1 Ca-ATPase: A Normal Mode Study
Volume 5, Issue 5, Pages (December 2013)
Volume 85, Issue 7, Pages (June 1996)
Volume 4, Issue 3, Pages (March 1996)
Richard C. Page, Sanguk Kim, Timothy A. Cross  Structure 
Volume 15, Issue 9, Pages (September 2007)
Volume 22, Issue 6, Pages (June 2014)
Nicholas J Skelton, Cliff Quan, Dorothea Reilly, Henry Lowman 
Volume 96, Issue 7, Pages (April 2009)
Ligand Binding to the Voltage-Gated Kv1
Volume 17, Issue 10, Pages (October 2009)
Karunesh Arora, Tamar Schlick  Biophysical Journal 
Intrinsic Bending and Structural Rearrangement of Tubulin Dimer: Molecular Dynamics Simulations and Coarse-Grained Analysis  Yeshitila Gebremichael, Jhih-Wei.
The Structural Basis of Peptide-Protein Binding Strategies
Volume 83, Issue 6, Pages (December 2002)
Dominico Vigil, Stephen C. Gallagher, Jill Trewhella, Angel E. García 
Crystal structure description
Structure and Dynamics of Zymogen Human Blood Coagulation Factor X
Volume 9, Issue 2, Pages (August 1998)
Protein structure prediction
Mijo Simunovic, Gregory A. Voth  Biophysical Journal 
Volume 4, Issue 3, Pages (March 1996)
Atomic Detail Peptide-Membrane Interactions: Molecular Dynamics Simulation of Gramicidin S in a DMPC Bilayer  Dan Mihailescu, Jeremy C. Smith  Biophysical.
Presentation transcript:

TLS MODELLING OF ANISOTROPY IN MACROMOLECULAR REFINEMENT Martyn Winn CCP4, Daresbury Laboratory, U.K. York, April 11th 2002

Aims Mean square atomic displacements (static and dynamic) are an important part of model of protein. Atomic displacements are likely anisotropic, but rarely have luxury of refining individual anisotropic Us. Instead isotropic Bs. Intermediate descriptions??

Contributions to atomic U U = U crystal + U TLS + U internal + U atom U crystal : overall anisotropic scale factor w.r.t. crystal axes. U TLS : rigid body displacements e.g. of molecules, domains, secondary structure elements, side groups, etc. U internal : internal displacements of molecules, e.g. normal modes of vibration, torsions, etc. U atom : anisotropy of individual atoms

Rigid body model

Rigid body motion General displacement of atom (position r w.r.t. origin O) in rigid body: u = t + D.r For small libration : u  t +  r

TLS parameters Corresponding dyad: uu = tt + t  r - r  t - r   r Average over dynamic motion and static disorder gives atomic anisotropic displacement parameter (ADP): U TLS  = T + S T  r - r  S - r  L  r T, L and S describe mean square translation and libration of rigid body and their correlation. T  6 parameters, L  6 parameters, S  8 parameters

Use of TLS U TLS  = T + S T  r - r  S - r  L  r Given refined U’s, fit TLS parameters - analysis Use TLS as refinement parameters TLS  U’s  structure factor - refinement

TLS in refinement TLS parameters are contribution to displacement parameters of model Can specify 1 or more TLS groups to describe contents of asymmetric unit (or part thereof) = 20 parameters per group (trace of S is undetermined) Number of extra refinement parameters depends on how many groups used!

At what resolution can I use TLS? Resolution < 1.2 Å - full anisotropic refinement Resolution ~ 1.5 Å - marginal for full anisotropic refinement. But can do detailed TLS, e.g. Howlin et al, Ribonuclease A, 1.45 Å, 45 side chain groups; Harris et al, papain, 1.6Å, 69 side chain groups. Resolution 1.5 Å Å  model molecules/domains rather than side chains. Sandalova et al thioredoxin reductase at 3.0 Å - TLS group for each of 6 monomers in asu

Implementation in REFMAC Suggested procedure: Choose TLS groups (currently via TLSIN file). Use anisotropic scaling. Set B values to constant value. Refine TLS parameters (and scaling parameters) against ML residual. Refine coordinates and residual B factors.

NCS Different molecules in asymmetric unit may have different overall thermal parameters. Refine independent overall TLS tensors for each molecule. REFMAC can then apply NCS restraints to residual B values of NCS-related molecules.

TLSIN TLS Chain O NAD binding RANGE 'O 1.' 'O 137.' ALL RANGE 'O 303.' 'O 340.' ALL TLS Chain O Catalytic RANGE 'O 138.' 'O 302.' ALL TLS Chain Q NAD binding RANGE 'Q 1.' 'Q 137.' ALL RANGE 'Q 303.' 'Q 340.' ALL TLS Chain Q Catalytic RANGE 'Q 138.' 'Q 302.' ALL

Choice of TLS groups chemical knowledge, e.g. aromatic side groups of amino acids, secondary structure elements, domains, molecules best fit of TLS to ADPs of test structure, e.g. Holbrook & Kim (1984); rigid-body criterion applied to ADPs, e.g. Schneider (1996) dynamic domains identified from multiple configurations, e.g. more than one crystal form (DYNDOM), difference distance matrices (ESCET), MD simulations.

TLS - refmac5 interface Select TLS & restrained refinement at top of interface Specify TLS in and TLS out files. TLS Parameters folder: Number of cycles, e.g. 20 Fix Bfactors to e.g. 20 (value not crucial, but option is recommended)

What to look for in output Usual refinement statistics. Check R_free and TLS parameters in log file for convergence. Check TLS parameters to see if any dominant displacements. Pass XYZOUT and TLSOUT through TLSANL for analysis Consider alternative choices of TLS groups

TLSOUT TLS Chain O NAD binding RANGE 'O 1.' 'O 137.' ALL RANGE 'O 303.' 'O 340.' ALL ORIGIN T L S

Equivalent isotropic B factors TLS tensors  U TLS for atoms in group. U TLS  B TLS and anisotropy A Also have individually refined B res Hence, B TOT = B TLS + B res

Running TLSANL XYZIN: output coordinates from refmac with residual B factors (BRESID keyword) TLSIN: output TLS parameters from refmac TLSIN: ANISOU records including TLS and residual B contributions ATOM records containing choice of B (ISOOUT keyword) AXES: If AXES keyword set, file of principal axes in molscript format

Output of TLSANL Origins ( T and S, but not L, origin-dependent): Origin of calculation Centre of Reaction Axial systems for each tensor: orthogonal librational “ Simplest” description: 3 non-intersecting screw axes + 3 reduced translations

Displaying derived ADPs ORTEP: Mapview: xtalview: Rastep in RASTER3D : using the script: grep NAD file.pdb | rastep -auto -Bcol > ellipsoids.r3d render -jpeg ellipsoids.jpeg Xfit: povscript:

11 a.a. (8% of TLS group) 30% probability level

Ex. 1 - mannitol dehydrogenase Hörer et al., J.Biol.Chem. 276, (2001) 1.5 Å data 3 tetramers in a.s.u. TLS refinement with 1 group per monomer Free-R 23.6%  20.9% TetramerB’s before TLS B’s after TLScrystal contacts ABCD EFGH IJKL

Ex. 2 - light harvesting complex Complex is nonamer. Each monomer contains:  peptide  peptide 2 x B850 bacteriochlorophyll 1 x B800 bacteriochlorophyll 2 x carotenoids Crystallographic asu = 3 monomers

 

TLS models a) 1 group for a.s.u. (20 parameters) b) 1 group per NCS unit (3 x 20 pars) c) 1 group per molecule (18 x 20 pars) d) 3 groups per peptide + 1 group per pigment (total 30 x 20 parameters)

Ex. 3 - peptide-MHC complexes Markus Rudolph Class I peptide-MHC complexes (1.7 Å – 1.9 Å) Alpha chain – 1 or 2 TLS groups Beta chain – 1 TLS group Bound peptide – 1 TLS group Free R decrease 22.3 to 21.1 in best case. Eigenvalues of L for peptide:

Example 4 - GAPDH Glyceraldehyde-3-phosphate dehydrogenase from Sulfolobus solfataricus (M.N.Isupov et al, JMB, 291, 651 (1999)) 340 amino acids 2 chains in asymmetric unit (O and Q), each molecule has NAD-binding and catalytic domains. P , data to 2.05Å

GAPDH: R factors ModelTLS groupsR factorR free * * B factors constant at 20 Å 2

TLS values - 1 TLS group Eigenvalues of reduced translation tensor: Å Å 2 – Å 2 Eigenvalues and pitches of screw axes: (  ) Å (  ) Å (  ) Å

Screw axes - 1 TLS group

Contributions to equivalent isotropic B factor

B’s from NCS-related chains

Correlations between NCS-related B's ModelTLS groupsR factorR free CorrCoeff * CorrCoeff - mean correlation coefficient between (residual) B factors of NCS-related chains

Application of NCS restraints ModelTLS groupsNCSR factorR free CorrCoeff 10no yes no yes NCS - whether NCS restraints applied

Example 5: GerE transcription regulator from Bacillus subtilis (Ducros et al). 74 amino acids six chains A-F in asymmetric unit C2, data to 2.05Å

GerE

GerE: R factors ModelTLS groupsR factorR free

Contributions to equivalent isotropic B factor

B’s from NCS-related chains

GerE: NCS ModelTLS groupsNCSR factorR free CorrCoeff 10no yes no yes NCS - whether NCS restraints applied CorrCoeff - mean correlation coefficient between (residual) B factors of NCS-related chains

Choice of TLS groups 6 groups - each group split between 2 chains (for illustration only!) ModelTLS groupsR factorR free

Choice of TLS groups

Inclusion of bound waters 6 TLS groups, with some waters included, WatersR factorR free None shell, cutoff shell, cutoff shell, cutoff

Acknowledgements BBSRC (CCP4 grant) Garib Murshudov Miroslav Papiz (LH2) Stefan Hörer (mannitol dehydrogenase) Markus Rudolph (MHC) Misha Isupov (GAPDH) Valerie Ducros, Jim Brannigan, Tony Wilkinson (GerE)