I. Physical Properties Ch. 11 - Gases. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant,

Slides:



Advertisements
Similar presentations
I. Physical Properties (p ) Ch. 10 & 11 - Gases.
Advertisements

I. Physical Properties 9 (A) describe and calculate the relations between volume, pressure, number of moles, and temperature for an ideal gas as described.
I. Physical Properties (p )
Kinetic Molecular Theory. What if… b Left a basketball outside in the cold… would the ball appear to be inflated or deflated? b Which picture box do you.
Physical Properties Gases. Kinetic Molecular Theory b Particles in an ideal gas… have no volume have elastic collisions are in constant, random, straight-line.
Chapter Pressure Macro-Scale Pressure is the amount of force exerted over a given area  Familiar unit is “pounds per square inch” or psi (tire.
I. Physical Properties Ch 12.1 & 13 Gases. Kinetic Molecular Theory 1. Particles of matter are ALWAYS in motion 2. Volume of individual particles is 
Lesson 1: The Nature of Gases UNIT 9 – GAS LAWS Chapter 13 and 14.
Think About This… Gas Atmosphere This is a U-Tube Manometer. The red stuff is a liquid that moves based on the pressures on each end of the tube. Based.
Gas Laws Gas Laws highly compressible. occupy the full volume of their containers. exert a uniform pressure on all inner surfaces of a container diffuse.
I. Physical Properties Ch Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant,
C. Johannesson I. Physical Properties (p ) Ch. 10 & 11 - Gases.
III. Ideal Gas Law Gases Gases. V n A. Avogadro’s Principle b Equal volumes of gases contain equal numbers of moles at constant temp & pressure true for.
CH 11 – Physical Characteristics of Gases: Objectives Describe how the kinetic-molecular theory of matter explains ideal gases Differentiate between ideal.
2 CHAPTER 12 GASES The Gas Laws u Describe HOW gases behave. u Can be predicted by the theory. u Amount of change can be calculated with mathematical.
The Gas Laws The Behavior of Gases. The Combined Gas Law The combined gas law expresses the relationship between pressure, volume and temperature of a.
Gases. Particles in an ideal gas… have no volume. have elastic collisions. are in constant, random, straight-line motion. don’t attract or repel each.
Properties and Measuring Variables Gases Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are.
I. Physical Properties (p ) Ch. 10 & 11 - Gases.
III. Ideal Gas Law Gases. PV T VnVn PV nT A. Ideal Gas Law = k UNIVERSAL GAS CONSTANT R= L  atm/mol  K R=8.315 dm 3  kPa/mol  K = R You don’t.
Ideal Gas Law & Gas Stoichiometry. Avogadro’s Principle Equal volumes of gases contain equal numbers of moles at constant temp & pressure true for any.
Ch. 10 Gases. Characteristics of Gases b Gases expand to fill any container. random motion, no attraction b Gases are fluids (like liquids). no attraction.
A theory concerning the thermodynamic behavior of matter, especially the relationships among pressure, volume, and temperature in gases. Kinetic Molecular.
I. Physical Properties Ch Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant,
I. The Gas Laws Ch Gases. A. Boyle’s Law b The pressure and volume of a gas are inversely related at constant mass & temp P V P 1 V 1 = P 2 V 2.
? Gases Chapter 4. ? Kinetic Molecular Theory Particles in an Ideal Gases…  have no volume.  have elastic collisions.  are in constant, random, straight-line.
AssignmentAssignment b Complete pre-assessment test. b Read Chapter 10, pp , and define vocabulary.
Physical Properties Gases. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. The particles in a gas are very far apart. have elastic.
I. Physical Properties Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant, random,
C. Johannesson Ch. 10 & 11 - Gases Gas Stoichiometry at Non- STP Conditions.
I. Physical Properties. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant, random, straight-
Physical Properties Ch. 10 & 11 - Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant,
Ch. 10 Gases. Characteristics of Gases b Gases expand to fill any container. random motion, no attraction b Gases are fluids (like liquids). no attraction.
I. Physical Properties Gases Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no (very small) volume. have elastic collisions. are.
I. Physical Properties Ch Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant,
I. Physical Properties Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant, random,
Using The Ideal Gas Law Gas Stoichiometry. PV T VnVn PV nT Ideal Gas Law = k UNIVERSAL GAS CONSTANT R= L  atm/mol  K R=8.31 L  kPa/mol  K =
Physical Properties Gases. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant, random, straight-
Ch Gases.  To describe a gas fully you need to state 4 measurable quantities:  Volume  Temperature  Number of molecules  pressure.
Gases & Kinetic Molecular Theory Kinetic molecular theory Gases Physical properties Temperature Pressure Boyles Law Charles Law Gay Lussacs Law Combined.
I. Physical Properties Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. The particles in a gas are very far apart. have.
C. Johannesson CHARACTERISTICS OF GASES Gases expand to fill any container. random motion, no attraction Gases are fluids (like liquids). no attraction.
Gas Laws: Physical Properties Part 1. Kinetic Molecular Theory b The tiny particles in matter are in constant motion due to kinetic energy. b 1. A gas.
The Gas Laws The Behavior of Gases. STPSTP b Standard Temperature and Pressure: b 273 K and 760 mm Hg b Or 0 C and 1atm.
The Gas Laws Ch. 14- Gases. Boyle’s Law P V PV = k Pressure and Volume are inversely proportional. As Volume increased, pressure decreases.
Ideal Gas Law Gases. C. Characteristics of Gases b Gases expand to fill any container. random motion, no attraction b Gases are fluids (like liquids).
I. Physical Properties (p. 399 – 402, ) Ch Gases Gases notes #1 - gas properties.ppt.
Ideal Gas Law & Gas Stoichiometry. Avogadro’s Principle Equal volumes of gases contain equal numbers of moles at constant temp & pressure true for any.
I. Physical Properties I. Gases I. Gases. Nature of Gases b Gases have mass. b They can be compressed. b They completely fill their containers. b Representative.
I. Physical Properties Ch Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have mass but no definite volume. have elastic collisions.
Gases I. Physical Properties.
A. Kinetic Molecular Theory
Gases.
I. Physical Properties (p )
Ch.12- Gases I. Physical Properties.
I. Physical Properties (p )
I. Physical Properties (p )
Gases I. Physical Properties.
Gas laws.
Gases Physical Properties.
I. Physical Properties (p )
I. Physical Properties (p. 303 – 312 in school)
Gases I. Physical Properties 9 (A) describe and calculate the relations between volume, pressure, number of moles, and temperature for an ideal gas as.
Ch Gases I. Physical Properties.
Properties and Measuring Variables
Ch Gases I. Physical Properties.
Ch Gases I. Physical Properties.
Gases Physical Properties.
Chapter 7-1, 7-2.
Gases and Laws – Unit 2 Version
Presentation transcript:

I. Physical Properties Ch Gases

Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant, random, straight- line motion. don’t attract or repel each other. have an avg. KE directly related to Kelvin temperature.

Real Gases b Particles in a REAL gas… have their own volume attract each other b Gas behavior is most ideal… at low pressures at high temperatures in nonpolar atoms/molecules

Characteristics of Gases b Gases expand to fill any container. random motion, no attraction b Gases are fluids (like liquids). no attraction b Gases have very low densities. no volume = lots of empty space

Characteristics of Gases b Gases can be compressed. no volume = lots of empty space b Gases undergo diffusion & effusion. random motion

TemperatureTemperature ºF ºC K K = ºC b Always use absolute temperature (Kelvin) when working with gases.

PressurePressure Which shoes create the most pressure?

PressurePressure b Barometer measures atmospheric pressure Mercury Barometer Aneroid Barometer

PressurePressure b Manometer measures contained gas pressure U-tube Manometer Bourdon-tube gauge

PressurePressure b KEY UNITS AT SEA LEVEL kPa (kilopascal) 1 atm 760 mm Hg 760 torr 14.7 psi

STPSTP Standard Temperature & Pressure 0°C 273 K 1 atm kPa -OR- STP

Boyle ’ s Law P V PV = k

Boyle ’ s Law b The pressure and volume of a gas are inversely related at constant mass & temp P V PV = k

V T Charles ’ Law

V T b The volume and absolute temperature (K) of a gas are directly related at constant mass & pressure

P T Gay-Lussac ’ s Law

P T b The pressure and absolute temperature (K) of a gas are directly related at constant mass & volume

= kPV PTPT VTVT T Combined Gas Law P1V1T1P1V1T1 = P2V2T2P2V2T2 P 1 V 1 T 2 = P 2 V 2 T 1

C. Johannesson GIVEN: V 1 = 473 cm 3 T 1 = 36°C = 309K V 2 = ? T 2 = 94°C = 367K WORK: P 1 V 1 T 2 = P 2 V 2 T 1 Gas Law Problems b A gas occupies 473 cm 3 at 36°C. Find its volume at 94°C. CHARLES’ LAW TT VV (473 cm 3 )(367 K)=V 2 (309 K) V 2 = 562 cm 3

C. Johannesson GIVEN: V 1 = 100. mL P 1 = 150. kPa V 2 = ? P 2 = 200. kPa WORK: P 1 V 1 T 2 = P 2 V 2 T 1 Gas Law Problems b A gas occupies 100. mL at 150. kPa. Find its volume at 200. kPa. BOYLE’S LAW PP VV (150.kPa)(100.mL)=(200.kPa)V 2 V 2 = 75.0 mL

C. Johannesson GIVEN: V 1 = 7.84 cm 3 P 1 = 71.8 kPa T 1 = 25°C = 298 K V2 = ?V2 = ? P 2 = kPa T 2 = 273 K WORK: P 1 V 1 T 2 = P 2 V 2 T 1 (71.8 kPa)(7.84 cm 3 )(273 K) =( kPa) V 2 (298 K) V 2 = 5.09 cm 3 Gas Law Problems b A gas occupies 7.84 cm 3 at 71.8 kPa & 25°C. Find its volume at STP. P  T  VV COMBINED GAS LAW

C. Johannesson GIVEN: P 1 = 765 torr T 1 = 23°C = 296K P 2 = 560. torr T 2 = ? WORK: P 1 V 1 T 2 = P 2 V 2 T 1 Gas Law Problems b A gas’ pressure is 765 torr at 23°C. At what temperature will the pressure be 560. torr? GAY-LUSSAC’S LAW PP TT (765 torr)T 2 = (560. torr)(296K) T 2 = 217K = -56°C

V n Avogadro ’ s Principle b Equal volumes of gases contain equal numbers of moles at constant temp & pressure true for any gas

C. Johannesson PV T VnVn PV nT Ideal Gas Law = k UNIVERSAL GAS CONSTANT R= L  atm/mol  K = R Merge the Combined Gas Law with Avogadro’s Principle:

C. Johannesson Ideal Gas Law UNIVERSAL GAS CONSTANT R= L  atm/mol  K R=8.315 dm 3  kPa/mol  K PV=nRT You don’t need to memorize these values!

C. Johannesson GIVEN: P = ? atm n = mol T = 16°C = 289 K V = 3.25 L R = L  atm/mol  K WORK: PV = nRT P(3.25)=(0.412)(0.0821)(289) L mol L  atm/mol  K K P = 3.01 atm Ideal Gas Law Problems b Calculate the pressure in atmospheres of mol of He at 16°C & occupying 3.25 L.

C. Johannesson GIVEN: V = ? n = 85 g T = 25°C = 298 K P = 104.5kPa=1.031 atm R = L*atm/mol  K Ideal Gas Law Problems b Find the volume of 85 g of O 2 at 25°C and kPa. = 2.7 mol WORK: 85 g 1 mol = 2.7 mol g PV = nRT ( )V=(2.7) (0.0821) (298) atm mol L  atm/mol  K K V = L = 64 L (s/fs)

C. Johannesson Gas Stoichiometry b Moles  Liters of a Gas: STP - use 22.4 L/mol Non-STP - use ideal gas law b Non- STP Given liters of gas?  start with ideal gas law Looking for liters of gas?  start with stoichiometry conv.

1 mol CaCO g CaCO 3 Gas Stoichiometry Problem b What volume of CO 2 forms from 5.25 g of CaCO 3 at 103 kPa & 25ºC? 5.25 g CaCO 3 = 1.26 mol CO 2 CaCO 3  CaO + CO 2 1 mol CO 2 1 mol CaCO g? L non-STP Looking for liters: Start with stoich and calculate moles of CO 2. Plug this into the Ideal Gas Law to find liters.

C. Johannesson WORK: PV = nRT (103 kPa)V =(1mol)(8.315 dm 3  kPa/mol  K )(298K) V = 1.26 dm 3 CO 2 Gas Stoichiometry Problem b What volume of CO 2 forms from 5.25 g of CaCO 3 at 103 kPa & 25ºC? GIVEN: P = 103 kPa V = ? n = 1.26 mol T = 25°C = 298 K R = dm 3  kPa/mol  K

C. Johannesson WORK: PV = nRT (97.3 kPa) (15.0 L) = n (8.315 dm 3  kPa/mol  K ) (294K) n = mol O 2 Gas Stoichiometry Problem b How many grams of Al 2 O 3 are formed from 15.0 L of O 2 at 97.3 kPa & 21°C? GIVEN: P = 97.3 kPa V = 15.0 L n = ? T = 21°C = 294 K R = dm 3  kPa/mol  K 4 Al + 3 O 2  2 Al 2 O L non-STP ? g Given liters: Start with Ideal Gas Law and calculate moles of O 2. NEXT 

2 mol Al 2 O 3 3 mol O 2 Gas Stoichiometry Problem b How many grams of Al 2 O 3 are formed from 15.0 L of O 2 at 97.3 kPa & 21°C? mol O 2 = 40.6 g Al 2 O 3 4 Al + 3 O 2  2 Al 2 O g Al 2 O 3 1 mol Al 2 O L non-STP ? g Use stoich to convert moles of O 2 to grams Al 2 O 3.