Photonuclear reactions in astrophysics

Slides:



Advertisements
Similar presentations
Kerstin Sonnabend, IKP, TU Darmstadt S-DALINAC - Nuclear Astrophysics Nuclear Astrophysics at the Darmstadt superconducting electron linear accelerator.
Advertisements

Photodissociation as a tool for nuclear astrophysics S. Müller, M. Elvers, J. Endres, M. Fritzsche, J. Hasper, K. Lindenberg, L. Kern, D. Savran, C. Siegel,
Photodisintegration and nuclear statistical quantities in astrophysics H. Utsunomiya (Konan University) SNP2008, Ohio University, July 8-11, 2008 Outline.
HIGS2 Workshop June 3-4, 2013 Nuclear Structure Studies at HI  S Henry R. Weller The HI  S Nuclear Physics Program.
Photo-Nuclear Physics Experiments by using an Intense Photon Beam Toshiyuki Shizuma Gamma-ray Nondestructive Detection Research Group Japan Atomic Energy.
Invariant-mass spectroscopy of neutron halo nuclei Takashi Nakamura 中村隆司 Tokyo Institute of Technology 東京工業大学 中日 NP 06, Shanghai.
Giant resonances, exotic modes & astrophysics
The r-Process Nearly four decades have passed since the r-process was postulated. The nature of the distribution of heavy elements in the solar system.
W A RICHTER UNIVERSITY OF THE WESTERN CAPE Shell-model studies of the rp reaction 25 Al(p,γ) 26 Si.
ROGER CABALLERO FOLCH, Barcelona, 9 th November 2011.
Sergio Palomares-RuizAugust 28, 2006 TeV  -rays and from nuclei photodissociation TeV Particle Astrophysics II August 2006, Madison, WI, USA in.
3 rd Annual INPP Meeting 17/6/2013 M. Axiotis Institute of Nuclear & Particle Physics NCSR “Demokritos” New Detector at the Tandem Laboratory of INPP for.
I. Dillmann Institut für Kernphysik, Forschungszentrum Karlsruhe KADoNiS The Sequel to the “Bao et al.” neutron capture compilations.
Astrophysical Reaction Rate for the Neutron-Generator Reaction 13 C(α,n) in Asymptotic Giant Branch Stars Eric Johnson Department of Physics Florida State.
The s-process Fe Co Ni Rb Ga Ge Zn Cu Se Br As Zr Y Sr Kr (n,  ) ()() ()() r-process p-process 63 Ni, t 1/2 =100 a 64 Cu, t 1/2 =12 h, 40 % (
Neutral Particles. Neutrons Neutrons are like neutral protons. –Mass is 1% larger –Interacts strongly Neutral charge complicates detection Neutron lifetime.
The s-process Fe Co Ni Rb Ga Ge Zn Cu Se Br As Zr Y Sr Kr (n,  ) ()() ()() r-process p-process 63 Ni, t 1/2 =100 a 64 Cu, t 1/2 =12 h, 40 % (
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Neutron capture cross sections on light nuclei M. Heil, F. Käppeler, E. Uberseder Torino workshop,

Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
25 9. Direct reactions - for example direct capture: Direct transition from initial state |a+A> to final state B +  geometrical.
1 TCP06 Parksville 8/5/06 Electron capture branching ratios for the nuclear matrix elements in double-beta decay using TITAN ◆ Nuclear matrix elements.
Futoshi Minato JAEA Nuclear Data Center, Tokai Theoretical calculations of beta-delayed neutrons and sensitivity analyses 1.
Weak Interactions and Supernova Collapse Dynamics Karlheinz Langanke GSI Helmholtzzentrum Darmstadt Technische Universität Darmstadt Erice, September 21,
Nuclear Astrophysics with the PJ Woods, University of Edinburgh.
Α - capture reactions using the 4π γ-summing technique Α. Lagoyannis Institute of Nuclear Physics, N.C.S.R. “Demokritos”
Neutron capture at the s-process branching points 171 Tm and 204 Tl Spokespersons: C. Guerrero (U.Sevilla/CERN) and C. Domingo-Pardo (CSIC-IFIC) Close.
Single-neutron structure of neutron-rich nuclei near 132 Sn Jolie A. Cizewski Department of Physics & Astronomy Rutgers University.
Anti-neutrinos Spectra from Nuclear Reactors Alejandro Sonzogni National Nuclear Data Center.
Astrophysical p-process: the synthesis of heavy, proton-rich isotopes Gy. Gyürky Institute of Nuclear Research (ATOMKI) Debrecen, Hungary Carpathian Summer.
-NUCLEUS INTERACTIONS OPEN QUESTIONS and FUTURE PROJECTS Cristina VOLPE Institut de Physique Nucléaire Orsay, France.
Nuclear structure and fundamental interactions Solid state physics Material irradiation Micrometeorite research and study Astrophysics Nuclear astrophysics.
Determination of radiative neutron capture cross sections for unstable nuclei by Coulomb dissociation H. Utsunomiya (Konan University) Outline 1.Methodology.
I. Introductory remarks and present status II. Laboratory experiments and astrophysics III. Future options scenarios status and challenges new developments.
ESF Workshop on The future of stable beams in Nuclear Astrophysics, Athens, Dec , 2007 Stable ion beams for nuclear astrophysics: Where do we stand.
Lesson 13 Nuclear Astrophysics. Elemental and Isotopic Abundances.
Slow neutron captures in stars
LLNL-PRES This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
1 S. A. Karamian I. Elementary microscopic states of complex nuclei are manifested: in radioactive decay processes; in specific nuclear reactions as: a)
Nuclear Structure SnSn P,n p n (  )‏ ( ,Xn)‏ M1E1 p,nn X λ ?E1 ExEx  Study of the pygmy dipole resonance as a function of deformation.
Lecture 6 p+p, Helium Burning and Energy Generation.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Neutron cross sections for reading the abundance history Michael Heil Forschungszentrum Karlsruhe.
Lomonosov Moscow State University Skobeltsyn Institute of Nuclear Physics V.Varlamov, EMIN-2009 (21 – 26 September) 1 V.A. Chetvertkova, B.S. Ishkhanov,
Shape evolution of highly deformed 75 Kr and projected shell model description Yang Yingchun Shanghai Jiao Tong University Shanghai, August 24, 2009.
MICROSCOPIC CALCULATION OF SYMMETRY PROJECTED NUCLEAR LEVEL DENSITIES Kris Van Houcke Ghent University In collaboration with S. Rombouts, K. Heyde, Y.
ガンマ線強度関数法によるアプローチ H. Utsunomiya (Konan University) Outline 1.Methodology of the  SF method 2.Applications to unstable nuclei along the valley of  -stability.
LOMONOSOV MOSCOW STATE UNIVERSITY, SKOBELTSYN INSTITUTE OF NUCLEAR PHYSICS Multi-particle photodisintegration of heavy nuclei A.N. Ermakov, B.S. Ishkhanov,
Nuclear and Radiation Physics, BAU, First Semester, (Saed Dababneh). 1.
Data Needs in Nuclear Astrophysics, Basel, June 23-25, 2006 Nuclear Astrophysics Resources of the National Nuclear Data Center B. Pritychenko*, M.W. Herman,
Exotic neutron-rich nuclei
Extreme Light Infrastructure - Nuclear Physics ELI – NP European Research Center Nicolae-Victor Zamfir National Institute for Physics and Nuclear Engineering.
Decay scheme studies using radiochemical methods R. Tripathi, P. K. Pujari Radiochemistry Division A. K. Mohanty Nuclear Physics Division Bhabha Atomic.
1 Cross sections of neutron reactions in S-Cl-Ar region in the s-process of nucleosynthesis C. Oprea 1, P. J. Szalanski 2, A. Ioan 1, P. M. Potlog 3 1Frank.
g beam test of the Liquid Xe calorimeter for the MEG experiment
Radiative capture and photodisintegration reactions P. Scholz, AG Zilges, University of Cologne Radiative capture and photodisintegration reactions for.
György Gyürky Institute for Nuclear Research (Atomki)
Resonances in the 12C(α,γ)16O reaction
the s process: messages from stellar He burning
György Gyürky Institute of Nuclear Research (Atomki) Debrecen, Hungary
The neutron capture cross section of the s-process branch point 63Ni
The astrophysical p-process
Self-consistent theory of stellar electron capture rates
Nucleosynthesis 12 C(
Novel technique for constraining r-process (n,γ) reaction rates.
ECT Workshop – Trento – November 2018
Val Kostroun and Bruce Dunham
Tatsushi Shima Research Center for Nuclear Physics, Osaka University
Astrophysical implications of the (n,
NEUTRINO INTERACTION WITH NUCLEI
Phantom Crossing DGP Gravity
Presentation transcript:

Photonuclear reactions in astrophysics 中日NP2006: 上海(Shanghai), May 16 - 20, 2006 H. Utsunomiya (Konan Univ) 1 Nucleosynthesis of heavy elements 2 Photonuclear reactions in stars 3 Laboratory studies: 12 nuclei D, Be-9, Se-80, Zr-90,94, Pd-108, La-139, Pr-141, Ta-181,W-186, Re-187, Os-188 4 Conclusions

Collaborators 1) <Konan> S. Goko, A. Makinaga, H. Akimune, T. Kaihori, S. Hohara 2) <AIST> H. Toyokawa, K. Kudo, A. Uritani, H. Harano, T. Matsumoto 3) <Kyoto> H. Ohgaki 4) <Numazu> K. Sumiyoshi 5) <NAO> T. Kajino 6) <Darmstadt> P. Mohr 7) <SPring-8> H. Yonehara, K. Soutome, N. Kumagai, H. Ohkuma, 8) <Texas A&M> Y.W. Lui 9) <Univ. Libre de Bruxelles> M. Arnould, S. Goriely, M. Rayet 10) <Orsay> E. Khan 11) <JAEA> H. Harada, F.Kitatani, K.Y. Hara, T. Hayakawa, H. Shizuma

Solar abundances of heavy elements Metal: 2% (mass %) 3W (what, where, when) & 1H (how) Who? (Nature or God)

Nucleosynthesis of heavy elements 35 neutron-deficient nuclei with small solar abundances:74Se - 196Hg p-nuclei GSI Darmstadt

Stellar Model of the p-process Arnould (1976) Woosley & Haward (1978) Rayet et al. (1995) Rauscher et al. (2002) Arnould & Goriely (2003) 2000 nuclei,20000 reactions : Photodisintegration: (g,n)(g,p)(g,a) Capture reactions: (n,g)(p,g)(a,g) Weak transformation: b-decays, e±-captures, (anti)neutrino-captures Temperature:(1.5 ~3.5) x 109 K Promising sites: O/Ne-rich layer of massive stars during their explosions as Type II(core collapse)-supernovae or in pre-supernova phase Type Ia-supernovae

Photoreaction rate for nuclei in the ground state j= n, p, a Planck distribution neutron channel Gamow peak GDR cross section Planck distribution

Stellar Photoreaction Rate (nucleus in state m) Z, A-1 Z, A Nuclei are thermalized under stellar conditions

Hauser-Feshbach model 3 important nuclear parameters g transmission coefficient Particle (n,p,a) transmission coefficient Level density

National Institute of Advanced Industrial Science and Technology AIST 産総研

Inverse Compton Scattering Eg = 1 – 40 MeV Inverse Compton Scattering “photon accelerator” g = Ee/mc2

AIST (産総研) Experimental Setup TERAS:Tsukuba Electron Ring for Accelerating and storage

Laser System TERAS mirror depolarizer+expander lens mirror Laser Nd:YVO4

Triple Ring Neutron Detector System Triple ring detector: 20 3He counters (4 x 8 x 8 ) triple ring detectors Monitor: NaI(Tl)

p process origin of 180Tam : stot at 109 K Arnould, Goriely s process origin of 180Tam : sm at 108 K Kaeppeler 180W 181W 182W 183W Unknown sm : 179Ta(n,g)180Tam 180m 179Ta 181Ta 182Ta 180g 180m 176Hf 177Hf 178Hf 179Hf 181Hf 180g s process r process

180Ta (odd-odd p-nucleus) Nature’s rarest isotope The one and only naturally-occurring isomer 181Ta(g,n)180Ta H. Utsunomiya et al. 2003 Phys. Rev. C63, 018801 Extra E1-strength at low energy

Novel probe of Nuclear Level Density of 180Ta Partial cross sections for the isomeric state : sm(E) for 181Ta(g,n)180Tam Novel probe of Nuclear Level Density of 180Ta 9/2ー 7/2ー 5/2ー 5ー 4ー 3ー 2ー s-wave neutron 75 keV > 1015 y 180Tam 9− E1 8.152 h 1− 180Ta Selective multistep transitions between high spin states 5ー → 6+ → 7ー → 8+ → 9ー 7/2+ 181Ta

181Ta 197Au Total cross sections: stot(E) for 181Ta(g,n)180Ta Direct neutron counting 181Ta 197Au sm(E)= stot (E) - sgs(E) Partial cross sections: sgs(E) for 181Ta(g,n)180Tags Photoactivation

sgs(E):partial cross section for the ground state 181Ta(g,n)180Tags(EC)180Hf Photoactivation 180Hf KX rays

Partial cross sections for the isomeric state : sm(E) for 181Ta(g,n)180Tam Combinatorial NLD: Hilaire et al. 2001: Goriely & Hilaire 2006 HFBCS pot. model: Demetriou & Goriely 2001 stot (E) sm(E) S. Goko et al. Phys. Rev. Lett. May-2006 issue, in press

Partial neutron capture cross section 179Ta(n,g)180Tam sm = 90 ± 22 mb at 30 keV: Statistical Model Calculation with the combinatorial NLD Previously, sm = 44 mb

Conclusions Astrophysical photo-reactions and disintegrations (APHRODITE) constitute an important research field in connection with the origin of heavy elements by probing ・E1 g strength function above/below neutron thresholds ・nuclear level density The following three research activities are important: (1) Photonuclear reaction experiments (g,n) (g,p) (g,a) (g,g’) (2) Nuclear theory and astrophysical modeling (3) New photon sources in the MeV region

10 tesla Super-Conducting Wiggler Yonehara, Soutome & Kumagai SPring-8

10T- SCW synchrotron radiation Utsunomiya et al., 2005 NIMA538, 225 Black-body radiation at billions of Kelvin Determination of Laboratory reaction rates for (g,n), (g,p), and (g,a) reactions