Objectives To learn how uncertainty in a measurement arises

Slides:



Advertisements
Similar presentations
CHEMISTRY 11 TODAY’s OBJECTIVE:
Advertisements

Significant Figures Every measurement has a limit on its accuracy based on the properties of the instrument used. we must indicate the precision of the.
Measurements and Calculations
Using Scientific Measurements.
Uncertainty in Measurements
Significant Figures Unit 1 Presentation 3. Scientific Notation The number of atoms in 12 g of carbon: 602,200,000,000,000,000,000, x The.
Significant Figures (digits)
SIGNIFICANT figures Two types of numbers: exact and inexact. Exact numbers are obtained by counting or by definitions – a dozen of wine, hundred cents.
Significant Figures PP 6a Honors Chemistry.
“A man with a watch knows what time it is. A man with two watches is never sure” (Unknown)
IB Chem I Uncertainty in Measurement Significant Figures.
1. To show how very large or very small numbers can be expressed in scientific notation 2. To learn the English, metric, and SI systems of measurement.
NOTES: 3.1, part 2 - Significant Figures
Chapter 1.5 Uncertainty in Measurement. Exact Numbers Values that are known exactly Numbers obtained from counting The number 1 in conversions Exactly.
Uncertainty in Measurements: Using Significant Figures & Scientific Notation Unit 1 Scientific Processes Steinbrink.
Significant Figures.
2.4 Significant Figures in Measurement
Uncertainty in Measurements and Significant Figures Group 4 Period 1.
Cup of coffee = ~ 200 ml Add drop of H 2 O = 0.05 mL New volume: ~200 mL or mL?? If you say you imply that the volume of the initial cup.
Measurements and Calculations 1. To show how very large or very small numbers can be expressed in scientific notation 2. To learn the English, metric,
The Importance of measurement Scientific Notation.
Significant Figures. Rules 1.All nonzeroes are significant 2.Zeroes in-between are significant 3.Zeroes to the left are not significant 4.Zeroes to the.
“A man with a watch knows what time it is
Week.  Student will: scientific notation  Write in scientific notation.
Significant Figures 1.All non-zero digits are significant (2.45 has 3 SF) 2.Zeros between (sandwiched)non- zero digits are significant (303 has 3 SF)
Measurements in Chemistry Scientific notation and Significant Figures.
Chemistry 100 Significant Figures. Rules for Significant Figures  Zeros used to locate decimal points are NOT significant. e.g., 0.5 kg = 5. X 10 2 g.
Objectives To learn how uncertainty in a measurement arises
Section 5.1 Scientific Notation and Units 1.To show how very large or very small numbers can be expressed in scientific notation 2.To learn the English,
Prefix Notes MEASUREMENTS. SIGNIFICANT FIGURES Rules for Counting Significant Figures 1.Nonzero integers always count as significant figures has.
Math Outline Math Concepts Important to Chemistry A.Significant Figures and Rounding B.Scientific Notation C.Unit Conversions & Conversion Factors.
Motion Unit Measurements Significant Figures in Calculations.
Chapter 1 Chemical Foundations. Section 1.4 Uncertainty in Measurement 2 Return to TOC Copyright © Cengage Learning. All rights reserved Precision and.
Significant Figures Physical Science. What is a significant figure? There are 2 kinds of numbers: –Exact: counting objects, or definitions. –Approximate:
Significant Figures Significant figures in a measurement consist of all the digits known with certainty plus one final digit, which is somewhat uncertain.
V. Limits of Measurement 1. Accuracy and Precision.
Uncertainty in Measurement A digit that must be estimated is called uncertain. A measurement always has some degree of uncertainty. Significant figures.
V. Limits of Measurement 1. Accuracy and Precision.
All measurements are subject to uncertainties. All instruments used are influenced by external circumstances, and the accuracy of a measurement may be.
1 Significant Figures (Sig Figs) Quantity includes all known digits plus one estimated digit = last digit of # Indicates precision 500 vs
Significant Figures Writing numbers to reflect precision.
Uncertainty in Measurement A digit that must be estimated is called uncertain. A measurement always has some degree of uncertainty.
Significant Digits or Significant Figures. WHY??? The number of significant figures in a measurement is equal to the number of digits that are known with.
Significant Figures. Significant Figure Rules 1) ALL non-zero numbers (1,2,3,4,5,6,7,8,9) are ALWAYS significant. 1) ALL non-zero numbers (1,2,3,4,5,6,7,8,9)
Section 5.1 Scientific Notation and Units Steven S. Zumdahl Susan A. Zumdahl Donald J. DeCoste Gretchen M. Adams University of Illinois at Urbana-Champaign.
1.9 Significant Figures Writing Numbers to Reflect Precision.
Significant Figures All the digits that can be known precisely in a measurement, plus a last estimated digit.
Uncertainty in Measurement How would you measure 9 ml most precisely? What is the volume being measured here? What is the uncertainty measurement? For.
 1. Nonzero integers. Nonzero integers always count as significant figures. For example, the number 1457 has four nonzero integers, all of which count.
1.7 International System of Units (SI) Measurement and the metric system.
Section 5.2 Uncertainty in Measurement and Significant Figures 1.To learn how uncertainty in a measurement arises 2.To learn to indicate a measurement’s.
1-2 Significant Figures: Rules and Calculations (Section 2.5, p )
Numbers in Science Chemists deal with very large numbers… (Do you recognize this number?)
Numbers in Science Chemists deal with very large numbers
SIG FIGURE’S RULE SUMMARY COUNTING #’S and Conversion factors – INFINITE NONZERO DIGIT’S: ALWAYS ZERO’S: LEADING : NEVER CAPTIVE: ALWAYS TRAILING :SOMETIMES.
Significant Figures When we take measurements or make calculations, we do so with a certain precision. This precision is determined by the instrument we.
Significant Figures Notes on PAGE _____. Significant Figures Notes on PAGE _____.
Objectives To learn how uncertainty in a measurement arises
Objectives To show how very large or very small numbers can be expressed in scientific notation To learn the English, metric, and SI systems of measurement.
SIG FIGURE’S RULE SUMMARY
“A man with a watch knows what time it is
PHYSICS 11 TODAY’s OBJECTIVE:
Text Section 2.3 Pages
Significant Figures and Scientific Notation
“A man with a watch knows what time it is
Significant Figures (digits)
Chapter 2 Measurements 2.3 Measured Numbers and Significant Figures
Measurement and Calculations
Significant Figures (Sig figs)
Significant Figures (digits)
Presentation transcript:

Objectives To learn how uncertainty in a measurement arises To learn to indicate a measurement’s uncertainty by using significant figures To learn to determine the number of significant figures in a calculated result

A. Uncertainty in Measurement A measurement always has some degree of uncertainty.

Uncertainty in Measurement

A. Uncertainty in Measurement Different people estimate differently. Record all certain numbers and one estimated number.

B. Significant Figures Significant figures are the meaningful figures in our measurements and they allow us to generate meaningful conclusions Numbers recorded in a measurement are significant. All the certain numbers plus first estimated number e.g. 2.85 cm We need to be able to combine data and still produce meaningful information There are rules about combining data that depend on how many significant figures we start with………

B. Significant Figures Rules for Counting Significant Figures Nonzero integers always count as significant figures. 1457 has 4 significant figures 23.3 has 3 significant figures

B. Significant Figures Rules for Counting Significant Figures Zeros Leading zeros - never count 0.0025 2 significant figures Captive zeros - always count 1.008 4 significant figures Trailing zeros - count only if the number is written with a decimal point 100 1 significant figure 100. 3 significant figures 120.0 4 significant figures

B. Significant Figures Rules for Counting Significant Figures Exact numbers - unlimited significant figures Not obtained by measurement Determined by counting: 3 apples Determined by definition: 1 in. = 2.54 cm

How Many Significant Figures? 1422 65,321 1.004 x 105 200 435.662 50.041 102 102.0 1.02 0.00102 0.10200 1.02 x 104 1.020 x 104 60 minutes in an hour 500 laps in the race

B. Significant Figures Rules for Multiplication and Division The number of significant figures in the result is the same as in the measurement with the smallest number of significant figures.

B. Significant Figures Rules for Addition and Subtraction The number of significant figures in the result is the same as in the measurement with the smallest number of decimal places.

Rules for Combined Units Multiplication / Division When you Multiply or Divide measurements you must carry out the same operation with the units as you do with the numbers 50 cm x 150 cm = 7500 cm2 20 m / 5 s = 4 m/s or 4 ms-1 16m / 4m = 4 Addition / Subtraction When you Add or Subtract measurements they must be in the same units and the units remain the same 50 cm + 150 cm = 200 cm 20 m/s – 15 m/s = 5 m/s

Calculate the following Calculate the following. Give your answer to the correct number of significant figures and use the correct units 11.7 km x 15.02 km = 12 mm x 34 mm x 9.445 mm = 14.05 m / 7 s = 108 kg / 550 m3 = 23.2 L + 14 L = 55.3 s + 11.799 s = 16.37 cm – 4.2 cm = 350.55 km – 234.348 km =