R&D Programme for RT Phase Feedback Giulio Morpurgo.

Slides:



Advertisements
Similar presentations
Compact Linear Collider. Overview The aim of the CLIC study is to investigate the feasibility of a high luminosity linear e-/e+ collider with a centre.
Advertisements

Measurements on phase stability at CTF3 Giulio Morpurgo / CERN IWLC 2010.
ILC RF phase stability requirements and how can we demonstrate them Sergei Nagaitsev Oct 24, 2007.
UPC participation in the development of BPMs for the TBL of the CTF3 Yuri Kubyshin WORKSHOP ON THE FUTURE LINEAR COLLIDER Gandía, December 3, 2005.
Beam Loss Analysis Tool for the CTF3 PETS Tank M. Velasco, T. Lefevre, R. Scheidegger, M. Wood, J. Hebden, G. Simpson Northwestern University, Evanston,
RF Synchronisation Issues
Drive Beam Phase Measurements and Feedback at CTF3 Giulio Morpurgo.
Beam loading compensation 300Hz positron generation (Hardware Upgrade ??? Due to present Budget problem) LCWS2013 at Tokyo Uni., Nov KEK, Junji.
R. Corsini, CLIC Project Meeting - 24 th May 2013 CTF3 1 CTF3: Highlights of the 1 st run R. Corsini for the CTF3 Team 1.
Alessandro Cappelletti for CTF3 collaboration 5 th May 2010 RESULTS OF BEAM BASED RF POWER PRODUCTION IN CTF3.
CTF3 commissioning status R. Corsini - CTF3 committee 17 th September 2009 Update on CTF3 Operations and schedule This time I will try to give a more complete.
CLIC Drive Beam Linac Rolf Wegner. Outline Introduction: CLIC Drive Beam Concept Drive Beam Modules (modulator, klystron, accelerating structure) Optimisation.
Test Facilities Sami Tantawi SLAC. Summary of SLAC Facilities NLCTA (3 RF stations, one Injector, one Radiation shielding) – Two 240ns pulse compressor,
Compensation of Transient Beam-Loading in CLIC Main Linac
Drive Beam and CTF 3 International Workshop on Linear Colliders 2010 October 22, 2010 Erik Adli, Department of Physics, University of Oslo and CERN Bernard.
Stability issues in CTF3 and their relevance for CLIC. Phase feed-forward. Piotr Skowronski (1), Tobias Persson (1), Alexey Dubrovskiy (1), Guido Sterbini.
R&D proposals for EuCard 2 EuCard2, April 21Steffen Döbert, BE-RF  SRF basic research (W. Weingarten)  CTF3 and CTF3+, possible infra - structure for.
Production of a Safe Drive Beam The Drive Beam pulse Which bunch goes where How to get rid of undesired bunches General Principle Operational Scenarios.
Thomas Jefferson National Accelerator Facility Page 1 23 rd Annual HUGS Program June 2-20, 2008 CEBAF Overview HUGS08 June 3 CEBAF Overview HUGS08 June.
Drive Beam Linac Stability Issues Avni AKSOY Ankara University.
CLIC Workshop 07 CERN, October 2007 Instrumentation Working Group In conference room Bldg Grahame Blair & Thibaut Lefevre.
Holger Schlarb, DESY Normal conducting cavity for arrival time stabilization.
SPIE, PA-IVKrzysztof Czuba1 Improved fiber-optic link for the phase reference distribution system for the TESLA technology based projects Krzysztof.
LLRF ILC GDE Meeting Feb.6,2007 Shin Michizono LLRF - Stability requirements and proposed llrf system - Typical rf perturbations - Achieved stability at.
1 C. Simon CLIC Instrumentation workshop BPM C. Simon on behalf of the Saclay’s group CLIC Instrumentation workshop 2 nd - 3 rd June.
Tom Powers LLRF Systems for Next Generation Light Sources LLRF Workshop October 2011 Authored by Jefferson Science Associates, LLC under U.S. DOE.
Current CLIC Energy Stages D. Schulte1. Main Beam Generation Complex Drive Beam Generation Complex Layout at 3 TeV D. Schulte2.
Luminosity expectations for the first years of CLIC operation CTC MJ.
LCLS_II High Rep Rate Operation and Femtosecond Timing J. Frisch 7/22/15.
Beam Driven Plasma-Wakefield Linear Collider: PWFA-LC J.P Delahaye / SLAC On behalf of J.P. E. Adli, S.J. Gessner, M.J. Hogan, T.O. Raubenheimer (SLAC),
BEPCII Transverse Feedback System Yue Junhui Beam Instrumentation Group IHEP , Beijing.
LCLS LLRF System October 10-13, 2005 LLRF05 B. Hong, R. Akre, A. Hill, D. Kotturi, H. Schwarz SLAC, Stanford, Menlo Park, CA 94025, USA Work supported.
Femtosecond phase measurement Alexandra Andersson CLIC Beam Instrumentation workshop.
Beam scenarios for a safe CLIC operation Giulio Morpurgo, for the MPWG.
CLIC work packages CTF3-003 (TBL+) CLIC0-001 (CLIC DB injector) CLIC0-002 (photo injector option for CLIC DB injector.
Considerations on Drive Beam Klystrons and Phase Stability Erk Jensen, BE-RF RF and Beam Physics Meeting on CLIC Drive Beam Generation12-August th.
How CLIC-Zero can become less expensive A.Grudiev, D. Schulte 16/06/09.
1 R. Corsini – CLIC Project Meeting CTF3 Update CTF3 Update R. Corsini for the CTF3 Team 1.
Low Emittance Generation and Preservation K. Yokoya, D. Schulte.
CERN, 27-Mar EuCARD NCLinac Task /3/2009.
Damping of Coupled-bunch Oscillations with Sub-harmonic RF Voltage? 1 H. Damerau LIU-PS Working Group Meeting 4 March 2014.
P. Urschütz - CTF3 Collaboration Meeting 2007 CTF3 commissioning & operation in 2006 P. Urschütz for the CTF3 operations team  Commissioning of the Delay.
Thesis: Introduction Study for a failsafe trigger generation system for the Large Hadron Collider beam dump kicker magnets prepared by Martin Rampl.
Injector Options for CLIC Drive Beam Linac Avni Aksoy Ankara University.
1 CTF3 CLEX day July 2006 CLEX day 2006 Introduction G.Geschonke CERN.
S. Bettoni, R. Corsini, A. Vivoli (CERN) CLIC drive beam injector design.
Oleksiy Kononenko CERN and JINR
High precision phase monitoring Alexandra Andersson, CERN Jonathan Sladen, CERN This work is supported by the Commission of the European Communities under.
IoP HEPP/APP annual meeting 2010 Feedback on Nanosecond Timescales: maintaining luminosity at future linear colliders Ben Constance John Adams Institute,
CLIC Re-baselining CSC, October Possible CLIC stages studied 2.
Proton Driver Keith Gollwitzer Accelerator Division Fermilab MAP Collaboration Meeting June 20, 2013.
X-band Based FEL proposal
CLIC Beam instrumentation work shop, CERN, 2 nd & 3 rd of June 2009, Lars Søby BPM overview CLIC instrumentation work shop 2-3 June BPM overview.
RF Commissioning D. Jacquet and M. Gruwé. November 8 th 2007D. Jacquet and M. Gruwé2 RF systems in a few words (I) A transverse dampers system ACCELERATING.
The synchronization of the CLIC beams Giulio Morpurgo.
A CW Linac scheme for CLIC drive beam acceleration. Hao Zha, Alexej Grudiev 07/06/2016.
Drive Beam Feedforward and Compression
EUROTeV Diagnostics WP5
RF acceleration and transverse damper systems
Phase Feed-Forward Piotr Skowroński (CERN)
LCLS_II High Rep Rate Operation and Femtosecond Timing
Steering algorithm experience at CTF3
Status of the CLIC main beam injectors
F.Marcellini, D.Alesini, A.Ghigo
CLIC Drive Beam Stabilisation
Measurements, ideas, curiosities
Fill-pattern Control System for KEKB
LCLS RF Stability Requirements
Explanation of the Basic Principles and Goals
CLIC Feasibility Demonstration at CTF3
Presentation transcript:

R&D Programme for RT Phase Feedback Giulio Morpurgo

Outline of this presentation What is the “phase feed-forward”, and which problem it tries to solve The test-stand (CTF3), and what do we want to do there

The problem The synchronization the CLIC beams Two couple of beams (DB1, MB1 and DB2, MB2) Synchronize DB1 (x 24) with MB1 Synchronize DB2 (x 24) with MB2 Synchronize MB1 with MB2 (not treated here)

Why must the MB and the DB be synchronized ? The Drive Beam carries the energy needed to accelerate the Main Beam. This energy, in the form of a 12 GHz pulse, is transferred to the RF cavities of the Main Linac, which produce a 12 GHz accelerating field to be seen by the Main Beam bunches. If this field has a wrong phase when the Main Beam sees it, the Main Beam will not be accelerated properly.

DB MB Synchronization points drive beam accelerator combiner rings CR1 CR2 delay loop 1 km e + injectore - injector CLIC 3 TeV e + main linac e - main linac BC2 BC1 e + DR e - DR booster linac decelerator, 24 sectors of 868 m IP1 BDS 2.75 km BDS 2.75 km 47.9 km CR2 delay loop drive beam accelerator 1 km CR1 TA R= 120 m TA R= 120 m 245 m DB MB Main Beam Drive Beam MB DB Synchronization MB MB Synchronization ? ?

What happens at every “synchronization point” The Main Beam arrives, on its way to the end of the CLIC tunnel. Its “phase” relative to a precision oscillator is measured. After some time, the Drive Beam train for this sector arrives. Its “phase” is also measured. The difference between the two phases is compared with a (predefined) “reference value”. The Drive Beam is deflected into the turn-around, where its path length is fine-tuned in accordance with the above phase measurements (RT phase feed-forward) The Drive Beam enters the deceleration sector, and start transferring its energy to the RF cavities Soon after, the Main Beam appears again, having travelled to the final turn-around and back, ready to be accelerated by the RF cavities

The MB-DB synchronization requirement The max. acceptable “phase” error (generated by a wrong delay between the arrival times of the Drive Beam and the Main Beam) has been set at 0.2° at 12 GHz. If the drive beam(s) and the main beam have a wrong relative “phase”, the main beam – will not be accelerated properly, and – its size will be enlarged by the Beam Delivery System (reducing luminosity) A correlated (among the 24 synchronization points) phase error of 0.2 ° corresponds to a relative luminosity reduction of ~1%* *D. Schulte, CLIC-Note-803

The famous MB DB phase feed-forward in the tunnel Using a (local) femto-timing system, measure delay ΔØ real between the two outgoing beams DB turn-around MB to IP Out-going DB B B’ D D’ Sensitivity of δE measurement/correction? Intra-pulse corrections ? *Precision of the « phase » measurement *Stability of local timing C At B&B’: compare ΔØ (MB DB) real with reference ΔØ (the difference is the “phase” error) Also measure Drive Beam energy error δE (use A&B) Compute correction (δE dependent) to “re-align” DB to MB using “C-D” chicane Use D&D’ to measure residual phase error MB/DB after feed-forward Use B&C to measure time to cover the Drive Beam turn-around Out-going MB *see work by J.Sladen and A.Andersson, EPAC 2006, PAC 2007, CLIC-Note-734 Issues: A MB turn-around Decelerating DB

MB DB synchronization: What exactly has to be synchronized? (and measured) A train of the drive beam consists of 2904 bunches spaced by 83.3 picoseconds (2.5 cms) The bunches of the drive beam lose their energy in the PETS, and this energy produces the accelerating field for the main beam. Every bunch of the main beam is accelerated by the field – produced by n (~60) bunches* of the drive beam – (perturbed by the previous n/6 main beam bunches) The Main Beam bunches have to see a correct RF phase to be accelerated properly *For an RF cavities filling time of 5 ns

MB DB synchronization: What we would like to measure at CTF3 The first quantity we would like to measure is the Drive Beam “phase” itself (i.e. The phase of the RF field generated by the passage of the Drive Beam into a suitable monitor, relative to the phase of the 3GHz Timing system). Our R&D programme in 2010 will mainly concentrate on this aspect. Effort should be put in measuring other relevant quantities (like Temperature, Beam Intensity, etc.) and studying the correlations between them and the phase. At a later stage, a precise measurement of the Arrival Time of individual bunches will certainly be useful to better understand and control the sources of phase instabilities.

R&D for 2010: general lines Questions – Can we measure the “phase” of the Drive Beam with the required precision (< 0.05° at 3 GHz)? – How does the phase of the Drive Beam change with time? Pulse to pulse Within a pulse – What are the reasons for those changes?

R&D for 2010: general lines Phase Measurements : luckily we will not start from scratch. A lot of work has been done by Alexandra Andersson and Jonathan Sladen during the past few years. By comparing the values of two independent monitors connected to the same signal, they have already obtained a relative precision of around 0.05° in a 50 MHz bandwidth using the CTF3 beam and a 30 GHz PETS structure. Their work gives confidence that a system measuring the phase with the required precision can be built. Relevant papers by A. Andersson and J.P.H. Sladen EPAC 2006, Precision Beam Timing Measurement System For CLIC Synchronization PAC 2007, First Tests of a Precision Beam Phase Measurement System in CTF3 CLIC-Note-734, RF-Based Electron Beam Timing Measurement With Sub-10 FS Resolution EUROTeV-Report , Final Report for the Timing and Phase Monitoring (TPMON) Task

fully loaded acceleration recombination x 2 phase-coding bunch length control recombination x 4 bunch compression two-beam acceleration structures 12 GHz CTF3 as a test-stand The CTF3 Linac: Phase measurements will be performed here

Structure of the CTF3 beam At the Linac : -Pulse length 1.12 µs (~1680 bunches) -Bunch spacing 666 ps (20 cm) -One bunch every second 3GHz RF bucket; every 140ns (210 bunches) the occupancy parity is changed After recombination (delay loop + combining ring) -Pulse length 140 ns (12 GHz) -Bunch spacing 83.3 ps (2.5 cm) It is also possible to have a shorter pulse length in the Linac, and to suppress the 140ns phase switching

CTF3 as a test stand Pre-buncher Gun Klystrons 3 GHz timing FIRST MEASUREMENT Phase stability measurement: Mix 3GHz from timing and 3GHz signal induced by the beam in the last accelerating structure (whose Klystron will be switched off) Filter out high frequencies, digitize (one point every 1 ns), average over 10 points Look at Ø(t), the phase of the Beam Induced signal, relative to the (0) phase of the timing system GOAL OF THE MEASUREMENT Look at stability along the pulse Look at reproducibility pulse after pulse Buncher Accelerating structures Mixer Low-band filter Digitizer (~1 GHz) Data 3 GHz

Notes The CTF3 Drive Beam is preceded by a “header”, made of ~100 bunches. This header is used to bring the RF structures to a stable regime, so that all the bunches of the Drive Beam are accelerated as uniformly as possible. The header (or what is left of it) is then dumped after the Linac. In our case, the header will induce some signal in our “monitor” RF cavity. We should discard this signal, which will come at the beginning of our acquisition window.

Pre-buncher Gun Klystrons 3 GHz timing MEASURE PHASES FROM ALL CAVITIES The goal of this measurement is to determine if phase instabilities in different cavities are correlated or not. This is important to predict the way the error will accumulate in the CLIC Drive Beam Linac. The tolerance for correlated errors is a factor 4 tighter than the tolerance for uncorrelated ones buncher Accelerating structures Mixer Low-band filter Digitizer (~1GHz) Data Mixer Low-band filter Digitizer (~1GHz) Data

Pre-buncher Gun Klystrons 3 GHz timing INCLUDE BEAM CURRENT DATA FROM WALL CURRENT MONITORS MONITOR ALSO THE TEMPERATURE The goal is to study correlation between the phase measurements and the beam current, both inside a pulse, and pulse after pulse Also the temperature can have an effect which should be analyzed Buncher Accelerating structures Mixer Low-band filter Digitizer (~1 GHz) Data Mixer Low-band filter Digitizer (1 GHz) Data Wall current monitors They are capable of measuring the beam current distribution inside the pulse

fully loaded acceleration recombination x 2 phase-coding bunch length control recombination x 4 bunch compression two-beam acceleration structures 12 GHz Future development: measure phase at the two beam test stand It would also be interesting to make a phase measurement getting the signal from the two beam test area. (even if we know that no effort is done to maintain the phase stability) Mixer Low-band filter Digitizer (~1GHz) Data Mixer Low-band filter Digitizer (~1GHz) Data

Other measurements (beyond 2010) Phase feedback prototype – It would be nice to use the Combined Ring and the Extraction Line as a Test Stand to implement a Phase / Beam Arrival Time feedback Timing distribution – The CTF3 complex should also be used to gain experience with a “femto-second” timing system like the one needed for CLIC

fully loaded acceleration phase-coding two-beam acceleration structures 12 GHz CTF3 as a test-stand for phase feed-forward Possible installation of a RT phase feed-forward prototype measure correct verify Phase monitor Global Timing

Last but not least... I would like to thank in advance the many colleagues who will actively contribute to this activity!