Fall 2013 Notes 2 ECE 6340 Intermediate EM Waves Prof. David R. Jackson Dept. of ECE 1.

Slides:



Advertisements
Similar presentations
Chapter 1 Electromagnetic Fields
Advertisements

Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 6 ECE 6340 Intermediate EM Waves 1.
Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 26 ECE 6340 Intermediate EM Waves 1.
Microwave Engineering
Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 22 ECE 6340 Intermediate EM Waves 1.
Applied Electricity and Magnetism
Prof. Ji Chen Adapted from notes by Prof. Stuart A. Long Notes 4 Maxwell’s Equations ECE Spring 2014.
Prof. David R. Jackson ECE Dept. Fall 2014 Notes 18 ECE 2317 Applied Electricity and Magnetism 1.
Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 4 ECE 6340 Intermediate EM Waves 1.
Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 29 ECE 6340 Intermediate EM Waves 1.
Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 25 ECE 6340 Intermediate EM Waves 1.
Microwave Engineering
Applied Electricity and Magnetism
Prof. David R. Jackson ECE Dept. Fall 2014 Notes 31 ECE 2317 Applied Electricity and Magnetism 1.
Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 23 ECE 6340 Intermediate EM Waves 1.
Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 17 ECE 6340 Intermediate EM Waves 1.
ELECTRIC AND MAGNETIC FIELD INTERACTIONS WITH MATERIALS By: Engr. Hinesh Kumar (Lecturer)
Notes 1 ECE 6340 Intermediate EM Waves Fall 2013
Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 13 ECE 6340 Intermediate EM Waves 1.
Lecture 2. Derive the transmission line parameters (R, L, G, C) in terms of the electromagnetic fields Rederive the telegrapher equations using these.
Electromagnetic wave equations: dielectric without dispersion Section 75.
Prof. D. Wilton ECE Dept. Notes 25 ECE 2317 Applied Electricity and Magnetism Notes prepared by the EM group, University of Houston.
Prof. David R. Jackson Adapted from notes by Prof. Stuart A. Long Notes 4 Maxwell’s Equations ECE 3317.
Lectures 7 & 8 Electric Potential – continuous charge distributions To calculate E produced by an electric dipole To investigate the forces and torques.
Prof. David R. Jackson ECE Dept. Fall 2014 Notes 7 ECE 2317 Applied Electricity and Magnetism Notes prepared by the EM Group University of Houston 1.
1 ENE 325 Electromagnetic Fields and Waves Lecture 8 Scalar and Vector Magnetic Potentials, Magnetic Force, Torque, Magnetic Material, and Permeability.
Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 9 ECE 6340 Intermediate EM Waves 1.
Prof. David R. Jackson ECE Dept. Fall 2014 Notes 15 ECE 2317 Applied Electricity and Magnetism 1.
Prof. David R. Jackson ECE Dept. Fall 2014 Notes 3 ECE 2317 Applied Electricity and Magnetism Notes prepared by the EM Group University of Houston 1.
Prof. David R. Jackson ECE Dept. Fall 2014 Notes 11 ECE 2317 Applied Electricity and Magnetism 1.
Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 3 ECE 6340 Intermediate EM Waves 1.
Prof. David R. Jackson ECE Dept. Spring 2016 Notes 10 ECE 3318 Applied Electricity and Magnetism 1.
Prof. David R. Jackson ECE Dept. Spring 2015 Notes 28 ECE 2317 Applied Electricity and Magnetism 1.
Prof. David R. Jackson ECE Dept. Spring 2016 Notes 14 ECE 3318 Applied Electricity and Magnetism 1.
Prof. David R. Jackson ECE Dept. Spring 2015 Notes 33 ECE 2317 Applied Electricity and Magnetism 1.
Prof. David R. Jackson Dept. of ECE Fall 2015 Notes 29 ECE 6340 Intermediate EM Waves 1.
Prof. David R. Jackson Dept. of ECE Fall 2015 Notes 22 ECE 6340 Intermediate EM Waves 1.
Notes 6 ECE 6340 Intermediate EM Waves Fall 2015
Prof. David R. Jackson ECE Dept. Spring 2016 Notes 33 ECE 3318 Applied Electricity and Magnetism 1.
Prof. David R. Jackson Dept. of ECE Fall 2015 Notes 3 ECE 6340 Intermediate EM Waves 1.
Prof. David R. Jackson ECE Dept. Spring 2016 Notes 20 ECE 3318 Applied Electricity and Magnetism 1.
Lecture 8 1 Ampere’s Law in Magnetic Media Ampere’s law in differential form in free space: Ampere’s law in differential form in free space: Ampere’s law.
Spring 2016 Notes 1 ECE 6341 Prof. David R. Jackson ECE Dept. 1.
Fundamentals of Electromagnetics: A Two-Week, 8-Day, Intensive Course for Training Faculty in Electrical-, Electronics-, Communication-, and Computer-
Spring 2015 Notes 25 ECE 6345 Prof. David R. Jackson ECE Dept. 1.
Notes 3 ECE 3318 Applied Electricity and Magnetism Spring 2017
Notes 22 ECE 6340 Intermediate EM Waves Fall 2016
Chapter 1 Electromagnetic Fields
Notes 27 ECE 6340 Intermediate EM Waves Fall 2016
ELEC 401 MICROWAVE ELECTRONICS Lecture 2
Notes 4 ECE 6340 Intermediate EM Waves Fall 2016
Applied Electricity and Magnetism
Applied Electricity and Magnetism
Notes 23 ECE 6340 Intermediate EM Waves Fall 2016
ECE 6345 Fall 2015 Prof. David R. Jackson ECE Dept. Notes 11.
Applied Electricity and Magnetism
Notes 29 ECE 6340 Intermediate EM Waves Fall 2016
Notes 17 ECE 6340 Intermediate EM Waves Fall 2016
Notes 3 ECE 6340 Intermediate EM Waves Fall 2016
ELEC 401 MICROWAVE ELECTRONICS Lecture 2
Microwave Engineering
Notes 7 ECE 3318 Applied Electricity and Magnetism Coulomb’s Law I
Applied Electromagnetic Waves Notes 4 Maxwell’s Equations
Notes 5 ECE 6340 Intermediate EM Waves Fall 2016
Notes 2 ECE 6340 Intermediate EM Waves Fall 2016
Notes 10 ECE 3318 Applied Electricity and Magnetism Gauss’s Law I
Notes 32 ECE 3318 Applied Electricity and Magnetism
Chapter 28 Magnetic Fields
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 16.
Presentation transcript:

Fall 2013 Notes 2 ECE 6340 Intermediate EM Waves Prof. David R. Jackson Dept. of ECE 1

Constitutive Relations Free Space: Since 1983, Also, (exact value) 2

Constitutive Relations Lorentz Force law (review): Particle Wire C The current i is the current flowing on the wire in the direction of the contour C. 3

Constitutive Relations (cont.) I I d FxFx Definition of I = 1 Amp: Hence x # 1 # 2 Two infinite wires carrying DC currents 4

Constitutive Relations (cont.) Phasor Domain: 5

Simple Linear Media Atomic picture: rr Dipoles -q q d Dipole moment of single molecule: 6 There is a simple linear relationship between the fields in the time domain, and there is thus no loss due to molecular or atomic friction.

Simple Linear Media (cont.) Applied electric field: Dipole moment per unit volume: Torque on dipole: rr Electric dipoles -q q E

Simple Linear Media (cont.) Simple linear media: so Then Definition of D vector: Dipole moment per unit volume: Note that usually  e > 0 Define: 8 Note: E is the average electric field inside the material (what we would use to calculate macroscopic voltage drop).

so a i Simple Linear Media (cont.) Magnetic media: Definition of H vector: Magnetic moment per unit volume: rr i Torque on dipole: Magnetic dipoles 9 Each magnetic dipole acts like a small bar magnet. N S

Simple linear media: so Simple Linear Media (cont.) or 10 Note: B is the average magnetic field inside the material.

Then Simple Linear Media (cont.) Define: 11

Summary Phasor Domain: 12 Simple Linear Media Note: For simple linear media the relative permittivity and permeability are real.

Generalized Linear Media Phasor Domain: Define: Then: Similarly: (complex) friction term 13 We still have a linear relationship in the phasor domain. This accounts for molecular or atomic friction, which results in material loss.

Anisotropic Media 14

Anisotropic Media (cont.) Isotropic: Uniaxial: Teflon Fibers 15

Anisotropic Media (cont.) Biaxial: Ferrite: is not symmetric! 16

Summary of Possible Media Simple: The permittivity is real. Generalized: The permittivity is complex. 17