ME451 Kinematics and Dynamics of Machine Systems

Slides:



Advertisements
Similar presentations
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems: Chapter 6 November 1, 2011 © Dan Negrut, 2011 ME451, UW-Madison TexPoint fonts.
Advertisements

ME751 Advanced Computational Multibody Dynamics Section 9.3 February 18, 2010 © Dan Negrut, 2010 ME751, UW-Madison Discontent is the first necessity of.
© 2011 Autodesk Freely licensed for use by educational institutions. Reuse and changes require a note indicating that content has been modified from the.
ME751 Advanced Computational Multibody Dynamics Section 9.2 February 2, 2010 © Dan Negrut, 2010 ME751, UW-Madison “My own business always bores me to death;
ME751 Advanced Computational Multibody Dynamics Inverse Dynamics Equilibrium Analysis Various Odd Ends March 18, 2010 © Dan Negrut, 2010 ME751, UW-Madison.
ME451 Kinematics and Dynamics of Machine Systems Relative Kinematic Constraints, Composite Joints – 3.3 October 4, 2011 © Dan Negrut, 2011 ME451, UW-Madison.
ME451 Kinematics and Dynamics of Machine Systems Cam-Follower Constraints – 3.3 Driving Constraints – 3.5 October 11, 2011 © Dan Negrut, 2011 ME451, UW-Madison.
PLANAR RIGID BODY MOTION: TRANSLATION & ROTATION
ME751 Advanced Computational Multibody Dynamics Section 9.2 February 9, 2010 © Dan Negrut, 2010 ME751, UW-Madison “In England, if you commit a crime, the.
Ch. 4: Velocity Kinematics
KINEMATICS ANALYSIS OF ROBOTS (Part 1) ENG4406 ROBOTICS AND MACHINE VISION PART 2 LECTURE 8.
ME451 Kinematics and Dynamics of Machine Systems Initial Conditions for Dynamic Analysis Constraint Reaction Forces October 23, 2013 Radu Serban University.
ME451 Kinematics and Dynamics of Machine Systems
INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 5)
ME451 Kinematics and Dynamics of Machine Systems Review of Elements of Calculus – 2.5 Vel. and Acc. of a Point fixed in a Ref Frame – 2.6 Absolute vs.
ME451 Kinematics and Dynamics of Machine Systems Review of Matrix Algebra – 2.2 Review of Elements of Calculus – 2.5 Vel. and Acc. of a point fixed in.
ME451 Kinematics and Dynamics of Machine Systems Review of Matrix Algebra – 2.2 September 13, 2011 Dan Negrut University of Wisconsin-Madison © Dan Negrut,
ME751 Advanced Computational Multibody Dynamics Section 9.2 January 28, 2010 © Dan Negrut, 2010 ME751, UW-Madison “Age is an issue of mind over matter.
ME451 Kinematics and Dynamics of Machine Systems
ME751 Advanced Computational Multibody Dynamics Review Calculus Starting Chapter 9 of Haug book January 26, 2010 © Dan Negrut, 2010 ME751, UW-Madison "Motivation.
ME451 Kinematics and Dynamics of Machine Systems Review of Linear Algebra 2.1 through 2.4 Th, Sept. 08 © Dan Negrut, 2011 ME451, UW-Madison TexPoint fonts.
PLANAR RIGID BODY MOTION: TRANSLATION & ROTATION
ME451 Kinematics and Dynamics of Machine Systems
ME451 Kinematics and Dynamics of Machine Systems Numerical Solution of DAE IVP Newmark Method November 1, 2013 Radu Serban University of Wisconsin-Madison.
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems November 11, , 6.1.4, 6.2, starting 6.3 © Dan Negrut, 2010 ME451,
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems December 1, 2011 Solving Index 3 DAEs using Newmark Method © Dan Negrut, 2011.
ME451 Kinematics and Dynamics of Machine Systems
ME451 Kinematics and Dynamics of Machine Systems Review of Linear Algebra 2.1 through 2.4 Tu, Sept. 07 © Dan Negrut, 2009 ME451, UW-Madison TexPoint fonts.
ME751 Advanced Computational Multibody Dynamics Section 9.3 February 16, 2010 © Dan Negrut, 2010 ME751, UW-Madison “Courage is fear holding on a minute.
ME751 Advanced Computational Multibody Dynamics Section 9.6 February 25, 2010 © Dan Negrut, 2010 ME751, UW-Madison “In China if you are one in a million.
ME451 Kinematics and Dynamics of Machine Systems Review of Linear Algebra 2.1, 2.2, 2.3 September 06, 2013 Radu Serban University of Wisconsin-Madison.
ME451 Kinematics and Dynamics of Machine Systems Vel. And Acc. of a Fixed Point in Moving Frame Basic Concepts in Planar Kinematics February.
ME451 Kinematics and Dynamics of Machine Systems Basic Concepts in Planar Kinematics 3.1, 3.2 September 18, 2013 Radu Serban University of Wisconsin-Madison.
ME451 Kinematics and Dynamics of Machine Systems Generalized Forces 6.2 October 16, 2013 Radu Serban University of Wisconsin-Madison.
ME451 Kinematics and Dynamics of Machine Systems Driving Constraints 3.5 October 19, 2010 © Dan Negrut, 2010 ME451, UW-Madison.
ME451 Kinematics and Dynamics of Machine Systems Introduction to Dynamics 6.1 October 09, 2013 Radu Serban University of Wisconsin-Madison.
ME451 Kinematics and Dynamics of Machine Systems Singular Configurations 3.7 October 07, 2013 Radu Serban University of Wisconsin-Madison.
ME451 Kinematics and Dynamics of Machine Systems Driving Constraints 3.5 September 30, 2013 Radu Serban University of Wisconsin-Madison.
ME451 Kinematics and Dynamics of Machine Systems Review of Differential Calculus 2.5, 2.6 September 11, 2013 Radu Serban University of Wisconsin-Madison.
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems March 31, , starting 6.3 © Dan Negrut, 2009 ME451, UW-Madison Quote.
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems November 10, , starting 6.3 © Dan Negrut, 2011 ME451, UW-Madison TexPoint.
ME451 Kinematics and Dynamics of Machine Systems Composite Joints – 3.3 Gears and Cam Followers – 3.4 February 17, 2009 © Dan Negrut, 2009 ME451, UW-Madison.
ME451 Kinematics and Dynamics of Machine Systems
PLANAR RIGID BODY MOTION: TRANSLATION & ROTATION
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems May 07, 2009 EOM in non-Cartesian Reference Frames ~ not in textbook~ Quote.
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems November 08, , 6.1.4, 6.2, starting 6.3 © Dan Negrut, 2011 ME451,
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems November 16, , starting 6.3 © Dan Negrut, 2010 ME451, UW-Madison TexPoint.
INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 4)
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems December 6, 2011 Equilibrium Analysis & Inverse Dynamics Analysis ME451 Wrap.
ME451 Kinematics and Dynamics of Machine Systems
ME451 Kinematics and Dynamics of Machine Systems Relative Kinematic Constraints, Composite Joints – 3.3 October 6, 2011 © Dan Negrut, 2011 ME451, UW-Madison.
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems December 9, 2010 Solving Index 3 DAEs using Newmark Method © Dan Negrut, 2010.
ME451 Kinematics and Dynamics of Machine Systems Driving Constraints 3.5 Start Position, Velocity, and Acc. Analysis 3.6 February 26, 2009 © Dan Negrut,
ME451 Kinematics and Dynamics of Machine Systems Start Position, Velocity, and Acc. Analysis 3.6 October 21, 2010 © Dan Negrut, 2010 ME451, UW-Madison.
ME451 Kinematics and Dynamics of Machine Systems Composite Joints – 3.3 Gears and Cam Followers – 3.4 October 5, 2010 © Dan Negrut, 2010 ME451, UW-Madison.
ME451 Kinematics and Dynamics of Machine Systems Absolute Constraints 3.2 September 20, 2013 Radu Serban University of Wisconsin-Madison.
ME751 Advanced Computational Multibody Dynamics Section 9.4 February 23, 2010 © Dan Negrut, 2010 ME751, UW-Madison “When You Come to a Fork in the Road,
ME 440 Intermediate Vibrations Th, April 2, 2009 Chapter 5: Vibration of 2DOF Systems © Dan Negrut, 2009 ME440, UW-Madison Quote of the Day: It is a miracle.
ME451 Kinematics and Dynamics of Machine Systems Relative Constraints 3.3 September 23, 2013 Radu Serban University of Wisconsin-Madison.
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems March 26, , © Dan Negrut, 2009 ME451, UW-Madison.
ME451 Kinematics and Dynamics of Machine Systems Review of Linear Algebra 2.1 through 2.4 Th, Jan. 22 © Dan Negrut, 2009 ME451, UW-Madison.
Chapter 17 Rigid Body Dynamics. Unconstrained Motion: 3 Equations for x, y, rotation.
INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 2)
ME451 Kinematics and Dynamics of Machine Systems Review of Elements of Calculus – 2.5 Vel and Acc of a Point fixed in a Ref Frame – 2.6 Jan. 29, 2009 ©
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems November 4, 2010 Chapter 6 © Dan Negrut, 2010 ME451, UW-Madison TexPoint fonts.
Velocity Propagation Between Robot Links 3/4 Instructor: Jacob Rosen Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA.
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems December 9, 2010 Solving Index 3 DAEs using Newmark Method © Dan Negrut, 2010.
ME451 Kinematics and Dynamics of Machine Systems
ME451 Kinematics and Dynamics of Machine Systems
CHAPTER 3-2. Planar Cartesian Kinematics
Presentation transcript:

ME451 Kinematics and Dynamics of Machine Systems Basic Concepts in Planar Kinematics - 3.1 Absolute Kinematic Constraints – 3.2 Relative Kinematic Constraints – 3.3 September 29, 2011 © Dan Negrut, 2011 ME451, UW-Madison “There is no reason for any individual to have a computer in their home.” Ken Olson, president and founder, Digital Equipment Corporation, 1977.

Before we get started… Last time: Today: Computing the velocity and acceleration of a point attached to a moving rigid body Absolute vs. relative generalized coordinates Start Chapter 3: Kinematics Analysis Today: Wrap up high level discussion of Kinematics Analysis after introducing the concept of Jacobian Start discussion on how to formulate Kinematic constraints associated with a mechanism Absolute kinematic constraints Relative kinematic constraints Assignment 4 due one week from today: Problems 2.6.1, 3.1.1, 3.1.2, 3.1.3 ADAMS and MATLAB components emailed to you Assignment 3 due today Problems due in class MATLAB and ADAMS part due at 23:59 PM 2

Example 3.1.1 A motion 1=4t2 is applied to the pendulum Use Cartesian generalized coordinates Formulate the velocity analysis problem Formulate the acceleration analysis problem 3

Kinematic Analysis Stages Position Analysis Stage Challenging Velocity Analysis Stage Simple Acceleration Analysis Stage OK To take care of all these stages, ONE step is critical: Write down the constraint equations associated with the joints present in your mechanism Once you have the constraints, the rest is boilerplate 4

Once you have the constraints… (Going beyond the critical step) The three stages of Kinematics Analysis: position analysis, velocity analysis, and acceleration analysis they each follow *very* similar recipes for finding for each body of the mechanism its position, velocity and acceleration, respectively ALL STAGES RELY ON THE CONCEPT OF JACOBIAN MATRIX: q – the partial derivative of the constraints wrt the generalized coordinates ALL STAGES REQUIRE THE SOLUTION OF A SYSTEM OF EQUATIONS WHAT IS DIFFERENT BETWEEN THE THREE STAGES IS THE EXPRESSION OF THE RIGHT-SIDE OF THE LINEAR EQUATION, “b” 5

The Details… As we pointed out, it all boils down to this: Step 1: Before anything, write down the constraint equations associated with your model Step 2: For each stage, construct q and the specific b , then solve for x So how do you get the position configuration of the mechanism? Kinematic Analysis key observation: The number of constraints (kinematic and driving) should be equal to the number of generalized coordinates This is, NDOF=0, a prerequisite for Kinematic Analysis IMPORTANT: This is a nonlinear systems with nc equations and nc unknowns that you must solve to find q 6

Getting the Velocity and Acceleration of the Mechanism Previous slide taught us how to find the positions q At each time step tk, generalized coordinates qk are the solution of a nonlinear system Take one time derivative of constraints (q,t) to obtain the velocity equation: Take yet one more time derivative to obtain the acceleration equation: NOTE: Getting right-hand side of acceleration equation is tedious 7

Producing RHS of Acceleration Eq. [In light of previous example] RHS was shown to be computed as Note that the RHS contains (is made up of) everything that does *not* depend on the generalized accelerations Implication: When doing small examples in class, don’t bother to compute the RHS using expression above This is done only in ADAMS, when you shoot for a uniform approach to all problems Simply take two time derivatives of your simple constraints and move everything that does *not* depend on acceleration to the RHS 8

[What comes next:] Focus on Geometric Constraints Learn how to write kinematic constraints that specify that the location and/or attitude of a body wrt the global (or absolute) RF is constrained in a certain way Sometimes called absolute constraints Learn how to write kinematic constraints that couple the relative motion of two bodies Sometimes called relative constraints 9

The Drill… [related to assignment] Step 1: Identify a kinematic constraint (revolute, translational, relative distance, etc., i.e., the physical thing) acting between two components of a mechanism Step 2: Formulate the algebraic equations that capture that constraint, (q)=0 This is called “modeling” Step 3: Compute the Jacobian (or the sensitivity matrix) q Step 4: Compute , the right side of the velocity equation Step 5: Compute , the right side of the acceleration equation (ugly…) This is what we do almost exclusively in Chapter 3 (about two weeks) 10

Absolute Constraints Called “Absolute” since they express constraint between a body in a system and an absolute (ground) reference frame Types of Absolute Constraints Absolute position constraints Absolute orientation constraints Absolute distance constraints 11

Absolute Constraints (Cntd.) Absolute position constraints x-coordinate of Pi y-coordinate of Pi Absolute orientation constraint Orientation f of body Body “i” 12

Absolute x-constraint Step 1: the absolute x component of the location of a point Pi in an absolute (or global) reference frame stays constant, and equal to some known value C1 Step 2: Identify ax(i)=0 Step 3: ax(i)q = ? Step 4: ax(i) = ? Step 5: ax(i) = ? NOTE: The same approach is used to get the y- and angle-constraints 13

Absolute distance-constraint Step 1: the distance from a point Pi to an absolute (or global) reference frame stays constant, and equal to some known value C4 Step 2: Identify dx(i)=0 Step 3: dx(i)q = ? Step 4: dx(i) = ? Step 5: dx(i) = ? 14