Which of these configurations gives V = 0 at all points on the y-axis? 4) all of the above 5) none of the above 10. Equipotential Surfaces III 1) x +2.

Slides:



Advertisements
Similar presentations
Electric Potential Energy and the Electric Potential
Advertisements

ConcepTest 17.1a Electric Potential Energy I
Capacitors.
Chapter 24 Capacitance, Dielectrics, Electric Energy Storage
Physics 2112 Unit 8: Capacitors
Chapter 21 Reading Quiz Dr. Harold Williams.
Electric Potential and Field
ConcepTest 16.1a Electric Charge I
AP Physics B Summer Course 年 AP 物理 B 暑假班 M Sittig Ch 20: Electrostatics.
Unit 2 Day 3: Electric Energy Storage Electric potential energy stored between capacitor plates Work done to add charge to the capacitor plates Energy.
UNIT 9 Electrostatics and Currents 1. Thursday March 22 nd 2 Electrostatics and Currents.
Copyright © 2010 Pearson Education, Inc. ConcepTest Clicker Questions Chapter 20 Physics, 4 th Edition James S. Walker.
Example: a parallel plate capacitor has an area of 10 cm 2 and plate separation 5 mm. 300 V is applied between its plates. If neoprene is inserted between.
Halliday/Resnick/Walker Fundamentals of Physics 8th edition
Lecture 8 Capacitance and capacitors
Chapter 26:Capacitance and Dielectrics. Capacitors A capacitor is made up of 2 conductors carrying charges of equal magnitude and opposite sign. The Capacitance.
1 Capacitance and Dielectrics Chapter 27 Physics chapter 27.
When a potential difference of 150 V is applied to the plates of a parallel-plate capacitor, the plates carry a surface charge density of 30.0 nC/cm2.
(Capacitance and capacitors)
Capacitance Physics Department, New York City College of Technology.
A sphere of radius A has a charge Q uniformly spread throughout its volume. Find the difference in the electric potential, in other words, the voltage.
Capacitors in series: Capacitors in parallel: Capacitors Consider two large metal plates which are parallel to each other and separated by a distance.
24 volts + - When fully charged which of these three capacitors holds the largest quantity of charge, Q? 2)B 3)C 4)all are the same Which of these three.
A +Q-Q d 12 V +  device to store charge –(also stores energy) connect capacitor to battery (V) –plates become oppositely charged +Q/-Q Q = C V charge.
Electricity and Magnetism
Physics for Scientists and Engineers II, Summer Semester 2009 Lecture 6: June 1 st 2009 Physics for Scientists and Engineers II.
ConcepTest 16.1aElectric Potential Energy I ConcepTest 16.1a Electric Potential Energy Ielectron proton electron proton + - A proton and an electron are.
Capacitors Consider two large metal plates which are parallel to each other and separated by a distance small compared with their width. Area A The field.
© 2012 Pearson Education, Inc. { Chapter 23 Electric Potential (cont.)
RC Circuits PH 203 Professor Lee Carkner Lecture 14.
ConcepTest 16.1aElectric Potential Energy I ConcepTest 16.1a Electric Potential Energy Ielectron proton electron proton + - A proton and an electron are.
ConcepTest 25.1 Capacitors
Copyright © 2009 Pearson Education, Inc. May Term in Guatemala GDS 3559/STS 3500: Engineering Public Health: An Interdisciplinary Exploration of Community.
Chapter 24 Capacitance, Dielectrics, Electric Energy Storage
Lecture 10 Capacitance and capacitors
Electrical Energy and Capacitance. Electrical Potential Energy Potential energy associated with the electrical force between two charges Form of mechanical.
Electric Potential. Electrostatic Potential Energy and Potential Difference The electrostatic force is conservative – potential energy can be defined.
ConcepTest 20.1aElectric Potential Energy I ConcepTest 20.1a Electric Potential Energy I 1) proton 2) electron 3) both feel the same force 4) neither –
Chapter 25 Capacitance-II In the last lecture: we calculated the capacitance C of a system of two isolated conductors. We also calculated the capacitance.
P212c25: 1 Chapter 25: Capacitance and Dielectrics Capacitor: two conductors (separated by an insulator) usually oppositely charged a +Q b -Q V ab proportional.
Capacitor C 1 is connected across a battery of 5 V. An identical capacitor C 2 is connected across a battery of 10 V. Which one has the most charge? C.
Chapter 18.2 Review Capacitance and Potential. 1. A 5 μF capacitor is connected to a 12 volt battery. What is the potential difference across the plates.
GENERAL PHYSICS LECTURE Chapter 26 CAPACITANCE AND DIELECTRICS Nguyễn Thị Ngọc Nữ PhD: Nguyễn Thị Ngọc Nữ.
Capacitors, Batteries. Capacitors Create a difference in Potential based upon how much charge is stored V = q/C (V) C : Capacitance C = k ε o A /d k :
Chapter 16 Electrical Energy and Capacitance Conceptual Quiz Questions.
1. ConcepTest 17.1aElectric Potential Energy I 1. ConcepTest 17.1a Electric Potential Energy I 1) proton 2) electron 3) both feel the same force 4) neither.
Copyright © 2009 Pearson Education, Inc. Chapter 23 Electric Potential.
Physics 212 Lecture 7, Slide 1 Physics 212 Lecture 7 Today's Concept: Conductors and Capacitance How are charges distributed on conductors? What is capacitance.
Heated filamentPositively charged can E = 800,000 N/C d = 2.5 cm, 1 e = 1.60  C v final ? Electron Gun.
12/4/2016 Advanced Physics Capacitance  Chapter 25 – Problems 1, 3, 8, (17), 19, (33), 39, 40 & 49.
Consider a charged capacitor whose plates are separated by air (dielectric constant 1.00 ). The capacitor is electrically isolated from its surroundings.
What charge exists on a 30 μF capacitor (fully charged) with a 120 V potential difference between its plates and what is the energy stored? Ans: 3.6.
Capacitance Chapter 25. Capacitance A capacitor consists of two isolated conductors (the plates) with charges +q and -q. Its capacitance C is defined.
Review Question Describe what happens to the lightbulb after the switch is closed. Assume that the capacitor has large capacitance and is initially uncharged,
Review: Kirchoff’s Rules Activity 13C Achieved level: Qn. 1; Merit: Qn. 2, 3, 4, 5, 6 Excellence: Qn. 3 d, 6 b) iv. Challenge Problem on paper at the front.

6. Capacitance and capacitors 6.1 Capacitors +Q -Q +Q -Q +Q 6.2 Capacitance [C]= 1 F = 1 C / V Definition:Units: Symbol: C is independent from: Q and ΔV.
Copyright © 2009 Pearson Education, Inc. Chapter 23 Electric Potential.
ENGINEERING PHYSICS SEMESTER /2012. ENGINEERING PHYSICS Sub Topics ● Charge units ● Electric field ● Electric force & Coulomb’s Law ● Capacitance.
Electric Potential Energy and Potential Difference
A proton and an electron are in a constant electric field created by oppositely charged plates. You release the proton from the positive side and the.
Physics: Principles with Applications, 6th edition
ConcepTest 17.1a Electric Potential Energy I
Electrical Energy, Potential and Capacitance
What charge exists on a 30 μF capacitor (fully charged) with a 120 V potential difference between its plates and what is the energy stored? Ans: 3.6.
General Physics (PHY 2140) Lecture 6 Electrostatics
Capacitors Devices used to store charge.
1. Electric Potential Energy I
Chapter 26 Problems Solving
Presentation transcript:

Which of these configurations gives V = 0 at all points on the y-axis? 4) all of the above 5) none of the above 10. Equipotential Surfaces III 1) x +2  C -2  C +1  C -1  C 2) x +2  C -1  C +1  C -2  C 3) x +2  C -1  C -2  C +1  C

Which two points have the same potential? 1) A and C 2) B and E 3) B and D 4) C and E 5) no pair A C B D E Q 11. Equipotential of Point Charge

Which requires the most work, to move a positive charge from P to points 1, 2, 3 or 4 ? All points are the same distance from P. 1) P  1 2) P  2 3) P  3 4) P  4 5) all require the same amount of work P Work and Electric Potential I

Which requires zero work, to move a positive charge from P to points 1, 2, 3 or 4 ? All points are the same distance from P. 1) P  1 2) P  2 3) P  3 4) P  4 5) all require the same amount of work P Work and Electric Potential II

Capacitor C 1 is connected across a battery of 5 V. An identical capacitor C 2 is connected across a battery of 10 V. Which one has the most charge? C 1 1) C 1 C 2 2) C 2 3) both have the same charge 4) it depends on other factors +Q+Q –Q–Q 14. Capacitors

increase the area of the plates 1) increase the area of the plates decrease separation between the plates 2) decrease separation between the plates 3) decrease the area of the plates 4) either (1) or (2) 5) either (2) or (3) What must be done to a capacitor in order to increase the amount of charge it can hold (for a constant voltage)? +Q –Q 15. Varying Capacitance I

+Q+Q –Q–Q A parallel-plate capacitor initially has a voltage of 400 V and stays connected to the battery. If the plate spacing is now doubled, what happens? the voltage decreases 1) the voltage decreases the voltage increases 2) the voltage increases the charge decreases 3) the charge decreases the charge increases 4) the charge increases both voltage and charge change 5) both voltage and charge change 16. Varying Capacitance II

A parallel-plate capacitor initially has a potential difference of 400 V and is then disconnected from the charging battery. If the plate spacing is now doubled (without changing Q), what is the new value of the voltage? 100 V 1) 100 V 200 V 2) 200 V 3) 400 V 4) 800 V 5) 1600 V +Q+Q –Q–Q 17. Varying Capacitance III