Long-Lived Dilute Photocarriers in Individualy-suspended Single-Walled Carbon Nanotubes Y. Hashimoto, A. Srivastava, J. Shaver, G. N. Ostojic, S. Zaric,

Slides:



Advertisements
Similar presentations
Femtosecond lasers István Robel
Advertisements

Ultrafast Experiments Hao Hu The University of Tennessee Department of Physics and Astronomy, Knoxville Course: Advanced Solid State Physics II (Spring.
Influence of solvation on 1-aminonaphthalene photophysics: ultrafast relaxation in the isolated molecule, molecular clusters and solution by Raúl Montero,
1 Cross-plan Si/SiGe superlattice acoustic and thermal properties measurement by picosecond ultrasonics Y. Ezzahri, S. Grauby, S. Dilhaire, J.M. Rampnouz,
Generation of short pulses
Femtochemistry: A theoretical overview Mario Barbatti II – Transient spectra and excited states This lecture can be downloaded.
Optical properties of single CdSe/ZnS colloidal QDs on a glass cover slip and gold colloid surface C. T. Yuan, W. C. Chou, Y. N. Chen, D. S. Chuu.
Indistinguishability of emitted photons from a semiconductor quantum dot in a micropillar cavity S. Varoutsis LPN Marcoussis S. Laurent, E. Viasnoff, P.
Pump Probe Measurements of Femto-second Pulses By David Baxter.
Saturated gain in GaN epilayers studied by variable stripe length technique Rui Li Journal Club, Electrical Engineering Boston University J. Mickevičiusa.
Research Opportunities in Radiation-Induced Chemical Dynamics Scientific Opportunities for Studying Laser Excited Dynamics at the LCLS: David Bartels Notre.
Studies of Minority Carrier Recombination Mechanisms in Beryllium Doped GaAs for Optimal High Speed LED Performance An Phuoc Doan Department of Electrical.
Jie Shan (a), Feng Wang (b), Ernst Knoesel (c), Mischa Bonn (d) Jie Shan (a), Feng Wang (b), Ernst Knoesel (c), Mischa Bonn (d), and Tony F. Heinz (b)Tony.
Optical control of electrons in single quantum dots Semion K. Saikin University of California, San Diego.
Valencia Bernd Hüttner Folie 1 New Physics on the Femtosecond Time Scale Bernd Hüttner CphysFInstP DLR Stuttgart.
J-Specific Dynamics in an Optical Centrifuge Matthew J. Murray, Qingnan Liu, Carlos Toro, Amy S. Mullin* Department of Chemistry and Biochemistry, University.
1 Femtosecond Time and Angle-Resolved Photoelectron Spectroscopy of Aqueous Solutions Toshinori Suzuki Kyoto University photoelectron.
RYDBERG ELECTRONS International Symposium on Molecular Spectroscopy 17 June 2008 Michael P. Minitti Brown University STEALTHY SPIES OF MOLECULAR STRUCTURE.
ITOH Lab. Hiroaki SAWADA
Photochemistry And Photophysics Of Nanoparticles Brian Ellis.
Institute of Materials Research and Engineering 3 Research Link, Singapore Website: Tel:
Pump-Probe Photoionization & Mass Spectroscopy of Pentamethylcyclopentadiene Fedor Rudakov Peter Weber Molecular Spectroscopy June 21, 2007.
Evidence of Radiational Transitions in the Triplet Manifold of Large Molecules Haifeng Xu, Philip Johnson Stony Brook University Trevor Sears Brookhaven.
1 Miyasaka Laboratory Yusuke Satoh David W. McCamant et al, Science, 2005, 310, Structural observation of the primary isomerization in vision.
Carbon Nanotube Formation Detection of Ni atom and C 2 Gary DeBoer LeTourneau University Longview, TX NASA Johnson Space Center Thermal Branch Structures.
Technion – Israel Institute of Technology Physics Department and Solid State Institute Eilon Poem, Stanislav Khatsevich, Yael Benny, Illia Marderfeld and.
スペクトルおよび 時間分解光誘起ファラデー回転による 磁気ポーラロンスピン配向過程 Spin polarization dynamics on magnetic polaron by means of spectrum- and time-resolved Faraday rotation 橋本 佑介、三野.
Observation of Excited Biexciton States in CuCl Quantum Dots : Control of the Quantum Dot Energy by a Photon Itoh Lab. Hiroaki SAWADA Michio IKEZAWA and.
Bhanu P. Singh Department Of Physics Indian Institute of Technology Bombay, Mumbai
Ultrafast particle and photon sources driven by intense laser ‐ plasma interaction Jyhpyng Wang Institute of Atomic and Molecular Sciences, Academia Sinica.
Fluence–dependent lifetime variations in neutron irradiated MCZ Si measured by microwave probed photoconductivity and dynamic grating techniques E.Gaubas,
Photo-induced ferromagnetism in bulk-Cd 0.95 Mn 0.05 Te via exciton Y. Hashimoto, H. Mino, T. Yamamuro, D. Kanbara, A T. Matsusue, B S. Takeyama Graduate.
SAINT-PETERSBURG STATE UNIVERSITY EXPERIMENTAL STUDY OF SPIN MEMORY IN NANOSTRUCTURES ROMAN V. CHERBUNIN.
N. Yugami, Utsunomiya University, Japan Generation of Short Electromagnetic Wave via Laser Plasma Interaction Experiments US-Japan Workshop on Heavy Ion.
Ultrafast Carrier Dynamics in Graphene M. Breusing, N. Severin, S. Eilers, J. Rabe and T. Elsässer Conclusion information about carrier distribution with10fs.
Magnetization dynamics
Micro-optical studies of optical properties and electronic states of ridge quantum wire lasers Presented at Department of Physics, Graduate.
Progress towards laser cooling strontium atoms on the intercombination transition Danielle Boddy Durham University – Atomic & Molecular Physics group.
Observation of ultrafast response by optical Kerr effect in high-quality CuCl thin films Asida Lab. Takayuki Umakoshi.
Molecular Spectroscopy of Carbon Nanotubes M.S. Dresselhaus MIT; DMR Research Summary: In this project, a novel resonant Raman mode related to.
Photoluminescence-excitation spectra on n-type doped quantum wire
Ultrafast carrier dynamics Optical Pump - THz Probe Ultrafast carrier dynamics in Br + -bombarded semiconductors investigated by Optical Pump - THz Probe.
光誘起キャリア緩和ダイナミクスおよびその偏光特性
Observation of ultrafast nonlinear response due to coherent coupling between light and confined excitons in a ZnO crystalline film Ashida Lab. Subaru Saeki.
Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan National Taiwan University, Taiwan National Central University, Taiwan National Chung.
Femtosecond Laser Spectroscopy of C 60 Nieuwegein, The Netherlands August 21, 2001 Eleanor Campbell, Göteborg University & Chalmers, Sweden R.D. Levine,
Sanghamitra Deb, Michael P. Minitti, Peter M. Weber Department Of Chemistry Brown University 64 th OSU International Symposium on Molecular Spectroscopy.
J. Phys. Chem. Lett., 2010, 1, Introduction Electron transfer (ET) processes and charge transfer (CT) states are involved in photosynthesis utilized.
Cavity soliton switching and pattern formation in an optically-pumped vertical-cavity semiconductor amplifier Laboratoire de Photonique et de Nanostructures.
Transient enhancement of the nonlinear atom-photon coupling via recoil-induced resonances: Joel A. Greenberg and Daniel. J. Gauthier Duke University 5/22/2009.
AFRL, Propulsion Directorate
Molecular Spectroscopy OSU June TRANSIENT ABSORPTION AND TIME-RESOLVED FLUORESCENCE STUDIES OF SOLVATED RUTHENIUM DI-BIPYRIDINE PSEUDO-HALIDE.
J.S. Colton, Universal scheme for opt.-detected T 1 measurements Universal scheme for optically- detected T 1 measurements (…and application to an n =
橋本佑介 A,B 三野弘文 A 、山室智文 A 、蒲原俊樹 A 、神原大蔵 A 、松末俊夫 B Jigang Wang C 、 Chanjuan Sun C 、河野淳一郎 C 、嶽山正二郎 D 千葉大院自然 A 、千葉大工 B 、ライス大 ECE C 、東大物研 D Y. Hashimoto A,B.
Development of a cavity ringdown spectrometer for measuring electronic states of Be clusters JACOB STEWART, MICHAEL SULLIVAN, MICHAEL HEAVEN DEPARTMENT.
Fluence dependent recombination lifetime in neutron and proton irradiated MCz, FZ and epi-Si structures E.Gaubas, J.Vaitkus, T.Čeponis, A.Uleckas, J.Raisanen,
Intramolecular Energy Redistribution in C 60 M. Boyle, Max Born Institute.
Rydberg Series of C 60 Osnabrück, Germany March 2002 Eleanor Campbell, Göteborg University & Chalmers, Sweden R.D. Levine, Fritz Haber Center, Hebrew University.
Ultrafast Carrier Dynamics in Single-Walled Carbon Nanotubes Friday, August 27, 2004 Yusuke Hashimoto Dept. of ECE, Rice University, Houston, USA Graduate.
Vibrational Dynamics of Cyclic Acid Dimers: Trifluoroacetic Acid in Gas and Dilute Solutions Steven T. Shipman, Pam Douglass, Ellen L. Mierzejewski, Brian.
Optical gain in 2D solution processable CdSe nanoplatelets
Time-Resolved X-ray Absorption Spectroscopy of Warm Dense Matter J.W. Lee 1,2,6, L.J. Bae 1,2, K. Engelhorn 3, B. Barbel 3, P. Heimann 4, Y. Ping 5, A.
Date of download: 7/6/2016 Copyright © 2016 SPIE. All rights reserved. Schematic representation of proposed MB dual-labeled activatable probe containing.
1 Room temperature slow light with 27 GHz bandwidth in semiconductor quantum dots Giovanni Piredda, Aaron Schweinsberg, and Robert W. Boyd The Institute.
SWNT Periodic Table Primary and secondary gap semiconductors.
G. Tamulaitis, A. Augulis, V. Gulbinas, S. Nargelas, E. Songaila, A
ISMS 2016 Urbana, IL Vura-Weis Group - UIUC
Magneto-Photoluminescence of Carbon Nanotubes at Ultralow Temperatures
Diagnosis of a High Harmonic Beam Using
Image-potential States in Carbon Nanotubes
Presentation transcript:

Long-Lived Dilute Photocarriers in Individualy-suspended Single-Walled Carbon Nanotubes Y. Hashimoto, A. Srivastava, J. Shaver, G. N. Ostojic, S. Zaric, V. C. Moore, R. H. Hauge, R. E. Smalley, and J. Kono Rice University Out line Introduction & Purpose Sample and Experimental setup Results and discussion Photo-induced carrier dynamics Polarization memory Summary Longer than 1 nano-second !!! Supported by TATP and Welch Foundation

ultimate quantum wire Introduction to Single-Walled Carbon Nanotube Diameter: 1 nano-meter Length: < 1 inch peak (n,m) Each peak corresponds to particular (n,m)

Single Walled Carbon Nanotubes photo-induced carrier life time Hertel and Moos, Phys. Rev. Lett. 84, 5002 (2000) Chen et al., Appl. Phys. Lett. 81, 975 (2002) Han et al., Appl. Phys. Lett. 82, 1458 (2003) Lauret et al., Phys. Rev. Lett. 90, (2003) Korovyanko et al. Phys. Rev. Lett. 92, (2004) < 1 ps Bundled SWNT ps Isolated SWNT G. N. Ostojic et al., Phys. Rev. Lett. 92, (2004) Y.-Z. Ma et al., J. Chem. Phys. 120, 3368 (2004) A. Hagen et al., Appl. Phys. A 78, 1137 (2004) F. Wang et al., Phys. Rev. Lett. 92, (2004) ~ 20 ns Theoretical C. D. Spataru et al., cond-mat/ v1 (2003) ~ ns Isolated SWNT This work

Purpose Photo-induced carrier relaxation dynamics in the low excitation limit Transient absorption  ~ 10 ps 1 – 30 mJ/cm 2 (0.89eV) Phys. Rev. Lett. 92, (2004) 0.06 – 5.7 mJ/cm 2 J. Chem. Phys. 120, 3368 (2004) Time resolved fluence  ~ 7 ps mJ/cm 2 Estimate the radiatibe relaxation time as 110 ns Phys. Rev. Lett. 92, (2004)  ~ 10 ps 1 – 30 mJ/cm 2 (0.89eV) G. N. Ostojic et al., Phys. Rev. Lett. 92, (2004)  ~ 0.06 – 5.7 mJ/cm 2 Y.-Z. Ma et al., J. Chem. Phys. 120, 3368 (2004) A. Hagen et al., Appl. Phys. A 78, 1137 (2004)  ~ 7 ps mJ/cm 2 F. Wang et al., Phys. Rev. Lett. 92, (2004) The relaxation dynamics of the photo-excited carriers in SWNTs radiativeNon-radiative ~ ps ~ ns Tube-tube interaction Catalyst particles at the tube ends Nonradiative recombination via surface defects etc. Exciton-exciton interaction ? What kind of the Non-radiative relaxation is taken place ? ~1mJ/cm2 ~640 e-h pairs in 1  m SWNT PRL. 92, (2004) In the previous study with a high-peak power OPA laser  < 20 ps 1 e-h pair per 1  m SWNT

Absorption shows sharp peaks SWNT is well isolated Single Walled Carbon Nanotube Sample Absorption spectrum Excited SWNTs are (12,5), (12,1), (11,3) (10,5), (9,8), (9,7) Raman spectrum SWNT SDS micelle SDS miscelled SWNT Science VOL (2002)

Experimental setup / 2 Pulse picker 80 MHz – 800 kHz Ti:s laser 80MHz Excitation fluence: 100 nJ/cm 2 Pump : Probe = 10 : 1 Si detector Lock in Laser wavelength: eV (E2H2) Delay stage (2 ns) Aperture SWNT

Photo-induced carrier dynamics in SWNT in low excitation limit Pump and probe signal persist even at 1 nano-second Photo-induced carrier dynamics shows very long decay !!! Room temperature Repetition rate: 8 MHz Polarization of the pump and probe: Previous report in high excitation  ~ 20 ps

1:  < 1 ps 2:  ~ 1 ns Decay dynamics

E E1 DOS E2 H2 H1 Decay dynamics ~ ns E2H2  E1H1 intraband transition E1H1 carrier recombination < 1 ps

Polarization memory Polarization memory persist even at 1 ns !!! In bundled SWNT, the polarization decay time ~ 10 ps O. J. Korovyanko et al., Phys. Rev. Lett (2004) Polarization of the pump and probe pulses

Summary The transient absorption of the isolated SWNTs in low excitation regime shows very fast (< 1 ps) E2H2  E1H1 intraband transition and very long (~ 1ns) E1H1 carrier recombination Future work Two color pump-probe in the isolated SWNT in the low excitation limit The polarization memory in isolated SWNTs shows no decay even at 1 ns.

Excited SWNT (12,1)L : 797 nm (11,3)L : 792 nm (10,5)l : 786 nm (9,7)l : 790 nm Raman spectrum

How to estimate the carrier concentration Density of the SWNT in solution:~20 x g/cm 3 Mass density of SWNT (11. 0): 2.06 x g/  m Density of the SWNT: 9.7 x  m/cm  (in the 1mm path length cuvette) Excitation intensity:1 mJ/cm 2 Photon energy:1 eV Excitation intensity: 6.2 x photon/cm 2 Absorption:10% (per 1 mm)

Long-Lived Dilute Photocarriers in Individualy-suspended Single-Walled Carbon Nanotubes Y. Hashimoto, A. Srivastava, J. Shaver, G. N. Ostojic, S. Zaric, V. C. Moore, R. H. Hauge, R. E. Smalley, and J. Kono Rice University Out line Introduction & Purpose Sample and Experimental setup Results and discussion Photo-induced carrier dynamics Polarization memory Summary Longer than 1 nano-second !!! Supported by TATP and Welch Foundation

ultimate quantum wire Introduction to Single-Walled Carbon Nanotube Diameter: 1 nano-meter Length: < 1 inch

Single Walled Carbon Nanotubes photo-induced carrier life time Hertel and Moos, Phys. Rev. Lett. 84, 5002 (2000) Chen et al., Appl. Phys. Lett. 81, 975 (2002) Han et al., Appl. Phys. Lett. 82, 1458 (2003) Lauret et al., Phys. Rev. Lett. 90, (2003) Korovyanko et al. Phys. Rev. Lett. 92, (2004) < 1 ps Bundled SWNT ps Isolated SWNT G. N. Ostojic et al., Phys. Rev. Lett. 92, (2004) Y.-Z. Ma et al., J. Chem. Phys. 120, 3368 (2004) A. Hagen et al., Appl. Phys. A 78, 1137 (2004) F. Wang et al., Phys. Rev. Lett. 92, (2004) ~ 20 ns Theoretical C. D. Spataru et al., cond-mat/ v1 (2003) ~ ns Isolated SWNT This work

Purpose Photo-induced carrier relaxation dynamics in the low excitation limit Transient absorption  ~ 10 ps 1 – 30 mJ/cm 2 (0.89eV) Phys. Rev. Lett. 92, (2004) 0.06 – 5.7 mJ/cm 2 J. Chem. Phys. 120, 3368 (2004) Time resolved fluence  ~ 7 ps mJ/cm 2 Estimate the radiatibe relaxation time as 110 ns Phys. Rev. Lett. 92, (2004)  ~ 10 ps 1 – 30 mJ/cm 2 (0.89eV) G. N. Ostojic et al., Phys. Rev. Lett. 92, (2004)  ~ 0.06 – 5.7 mJ/cm 2 Y.-Z. Ma et al., J. Chem. Phys. 120, 3368 (2004) A. Hagen et al., Appl. Phys. A 78, 1137 (2004)  ~ 7 ps mJ/cm 2 F. Wang et al., Phys. Rev. Lett. 92, (2004) The relaxation dynamics of the photo-excited carriers in SWNTs radiativeNon-radiative ~ ps ~ ns Tube-tube interaction Catalyst particles at the tube ends Nonradiative recombination via surface defects etc. Exciton-exciton interaction ? What kind of the Non-radiative relaxation is taken place ? ~1mJ/cm2 ~640 e-h pairs in 1  m SWNT PRL. 92, (2004) In the previous study with a high-peak power OPA laser  < 20 ps 1 e-h pair per 1  m SWNT

Absorption shows sharp peaks SWNT is well isolated Single Walled Carbon Nanotube Sample Absorption spectrum Excited SWNTs are (12,5), (12,1), (11,3) (10,5), (9,8), (9,7) Raman spectrum SWNT SDS micelle SDS miscelled SWNT Science VOL (2002)

Experimental setup / 2 Pulse picker 80 MHz – 800 kHz Ti:s laser 80MHz Excitation fluence: 100 nJ/cm 2 Pump : Probe = 10 : 1 Si detector Lock in Laser wavelength: eV (E2H2) Delay stage (2 ns) Aperture SWNT

Photo-induced carrier dynamics in SWNT in low excitation limit Pump and probe signal persist even at 1 nano-second Photo-induced carrier dynamics shows very long decay !!! Room temperature Repetition rate: 8 MHz Polarization of the pump and probe: Previous report in high excitation  ~ 20 ps

1:  < 1 ps 2:  ~ 1 ns Decay dynamics

E E1 DOS E2 H2 H1 Decay dynamics ~ ns E2H2  E1H1 intraband transition E1H1 carrier recombination < 1 ps

Polarization memory Polarization memory persist even at 1 ns !!! In bundled SWNT, the polarization decay time ~ 10 ps O. J. Korovyanko et al., Phys. Rev. Lett (2004) Polarization of the pump and probe pulses

Summary The transient absorption of the isolated SWNTs in low excitation regime shows very fast (< 1 ps) E2H2  E1H1 intraband transition and very long (~ 1ns) E1H1 carrier recombination Future work Two color pump-probe in the isolated SWNT in the low excitation limit The polarization memory in isolated SWNTs shows no decay even at 1 ns.