7.3.3 Volume by Cross-sectional Areas A.K.A. - Slicing.

Slides:



Advertisements
Similar presentations
Section Volumes by Slicing
Advertisements

Volumes by Slicing: Disks and Washers
Disks, Washers, and Cross Sections Review
Section Volumes by Slicing
More on Volumes & Average Function Value. Average On the last test (2), the average of the test was: FYI - there were 35 who scored a 9 or 10, which means.
Volumes – The Disk Method Lesson 7.2. Revolving a Function Consider a function f(x) on the interval [a, b] Now consider revolving that segment of curve.
6.2 - Volumes. Definition: Right Cylinder Let B 1 and B 2 be two congruent bases. A cylinder is the points on the line segments perpendicular to the bases.
APPLICATIONS OF INTEGRATION
SECTION 7.3 Volume. VOLUMES OF AN OBJECT WITH A KNOWN CROSS-SECTION  Think of the formula for the volume of a prism: V = Bh.  The base is a cross-section.
7.3 Volumes Quick Review What you’ll learn about Volumes As an Integral Square Cross Sections Circular Cross Sections Cylindrical Shells Other Cross.
Finding Volumes.
Volume of a Solid by Cross Section Section 5-9. Let be the region bounded by the graphs of x = y 2 and x=9. Find the volume of the solid that has as its.
5/19/2015 Perkins AP Calculus AB Day 7 Section 7.2.
Review: Volumes of Revolution. x y A 45 o wedge is cut from a cylinder of radius 3 as shown. Find the volume of the wedge. You could slice this wedge.
Section Volumes by Slicing
6.2C Volumes by Slicing with Known Cross-Sections.
V OLUMES OF SOLIDS WITH KNOWN CROSS SECTIONS 4-H.
Section 7.2 Solids of Revolution. 1 st Day Solids with Known Cross Sections.
MTH 252 Integral Calculus Chapter 7 – Applications of the Definite Integral Section 7.3 – Volumes by Cylindrical Shells Copyright © 2006 by Ron Wallace,
Geometric Solids EQ: What are the most common types of solids, what are cross sections and solids of revolution?
Chapter 7 Quiz Calculators allowed. 1. Find the area between the functions y=x 2 and y=x 3 a) 1/3 b) 1/12 c) 7/12 d) 1/4 2. Find the area between the.
Finding Volumes Disk/Washer/Shell Chapter 6.2 & 6.3 February 27, 2007.
7.3 Day One: Volumes by Slicing. Volumes by slicing can be found by adding up each slice of the solid as the thickness of the slices gets smaller and.
Lesson 6-2a Volumes Known Cross-sectional Areas. Ice Breaker Find the volume of the region bounded by y = 1, y = x² and the y-axis revolved about the.
Volume of Cross-Sectional Solids
Volume: The Disc Method
Let R be the region bounded by the curve y = e x/2, the y-axis and the line y = e. 1)Sketch the region R. Include points of intersection. 2) Find the.
Volumes Using Cross-Sections Solids of Revolution Solids Solids not generated by Revolution Examples: Classify the solids.
Finding Volumes Chapter 6.2 February 22, In General: Vertical Cut:Horizontal Cut:
Volumes Lesson 6.2.
Volumes by Slicing 7.3 Solids of Revolution.
Finding Volumes. In General: Vertical Cut:Horizontal Cut:
7.3.1 Volume by Disks and Washers I. Solids of Revolution A.) Def- If a region in the plane is revolved about a line in the plane, the resulting solid.
Volumes by Slicing. disk Find the Volume of revolution using the disk method washer Find the volume of revolution using the washer method shell Find the.
6.2 Volumes on a Base.
Section Volumes by Slicing 7.3 Solids of Revolution.
Solids of Known Cross Section. Variation on Disc Method  With the disc method, you can find the volume of a solid having a circular cross section  The.
Ch. 8 – Applications of Definite Integrals 8.3 – Volumes.
Volumes of Solids with Known Cross Sections
Volume Find the area of a random cross section, then integrate it.
8.1 Arc Length and Surface Area Thurs Feb 4 Do Now Find the volume of the solid created by revolving the region bounded by the x-axis, y-axis, and y =
Volume of Regions with cross- sections an off shoot of Disk MethodV =  b a (π r 2 ) dr Area of each cross section (circle) * If you know the cross.
6.2 - Volumes Roshan. What is Volume? What do we mean by the volume of a solid? How do we know that the volume of a sphere of radius r is 4πr 3 /3 ? How.
SECTION 7-3-C Volumes of Known Cross - Sections. Recall: Perpendicular to x – axis Perpendicular to y – axis.
 The volume of a known integrable cross- section area A(x) from x = a to x = b is  Common areas:  square: A = s 2 semi-circle: A = ½  r 2 equilateral.
C.2.5b – Volumes of Revolution – Method of Cylinders Calculus – Santowski 6/12/20161Calculus - Santowski.
Calculus 6-R Unit 6 Applications of Integration Review Problems.
7.2 Volume: The Disk Method (Day 3) (Volume of Solids with known Cross- Sections) Objectives: -Students will find the volume of a solid of revolution using.
Drill: Find the area in the 4 th quadrant bounded by y=e x -5.6; Calculator is Allowed! 1) Sketch 2) Highlight 3) X Values 4) Integrate X=? X=0 X=1.723.
7-2 SOLIDS OF REVOLUTION Rizzi – Calc BC. UM…WHAT?  A region rotated about an axis creates a solid of revolution  Visualization Visualization.
Section 7.3: Volume The Last One!!! Objective: Students will be able to… Find the volume of an object using one of the following methods: slicing, disk,
8-3 Volumes.
Volumes of solids with known cross sections
Finding Volumes.
Volumes – The Disk Method
Cross Sections Section 7.2.
Volume by Cross Sections
Finding Volumes Disk/Washer/Shell
Find the volume of the solid obtained by rotating the region bounded by {image} and {image} about the x-axis. 1. {image}
3. Volumes.
6.4 Volumes by Cross Sections
Warmup 1) 2) 3).
Volume of Solids with Known Cross Sections
Volume by Cross-sectional Areas A.K.A. - Slicing
Applications Of The Definite Integral
Warm Up Find the volume of the following shapes (cubic inches)
Chapter 6 Cross Sectional Volume
5 More!.
Section Volumes by Slicing
Warm Up Find the volume of the following 3 dimensional shapes.
Presentation transcript:

7.3.3 Volume by Cross-sectional Areas A.K.A. - Slicing

I. Slicing It is possible to find the volume of a solid (not necessarily a SOR) by integration techniques if parallel cross-sections obtained by slicing solid with parallel planes perpendicular to an axis have the same basic shape. If the area of a cross-section is known and can be expressed in terms of x or y, then the area of a typical slice can be determined. The volume can be obtained by letting the number of slices increase indefinitely.

Therefore,

II. Examples A.) Assume that the base of a solid is the circle and on each chord of the circle parallel to the y-axis there is erected a square. Find the volume of the resulting solid.

B.) Find the volume of the solid whose base is the region in the first quadrant bounded by, the x-axis, and the y-axis, and whose cross- sections taken perp. to the x-axis are squares.

C.) Find the volume of the solid whose base is between one arc of y = sin x and the x-axis, and whose cross-sections perp. to the x-axis are equilateral triangles.

III. Other Links  d/sectiongallery.html d/sectiongallery.html   of_the_intgrl/7_03_01_finding_vol_by_slicing.htm of_the_intgrl/7_03_01_finding_vol_by_slicing.htm  of_the_intgrl/7_03_02_finding_vol_by_using_cylin d_shells.htm of_the_intgrl/7_03_02_finding_vol_by_using_cylin d_shells.htm